|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: torgo_tiny_finetune_M05_frozen_encoder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# torgo_tiny_finetune_M05_frozen_encoder |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2755 |
|
- Wer: 40.5772 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.7762 | 0.84 | 500 | 0.2681 | 42.3599 | |
|
| 0.0927 | 1.68 | 1000 | 0.2688 | 26.0611 | |
|
| 0.0703 | 2.53 | 1500 | 0.2827 | 27.6740 | |
|
| 0.0457 | 3.37 | 2000 | 0.2467 | 22.4109 | |
|
| 0.0318 | 4.21 | 2500 | 0.2900 | 21.8166 | |
|
| 0.0225 | 5.05 | 3000 | 0.2947 | 23.9389 | |
|
| 0.0173 | 5.89 | 3500 | 0.2752 | 22.3260 | |
|
| 0.0127 | 6.73 | 4000 | 0.2749 | 22.7504 | |
|
| 0.0112 | 7.58 | 4500 | 0.2957 | 22.4109 | |
|
| 0.008 | 8.42 | 5000 | 0.2765 | 23.3447 | |
|
| 0.0071 | 9.26 | 5500 | 0.2780 | 30.3056 | |
|
| 0.0049 | 10.1 | 6000 | 0.2827 | 23.5144 | |
|
| 0.0045 | 10.94 | 6500 | 0.2884 | 34.5501 | |
|
| 0.0036 | 11.78 | 7000 | 0.2605 | 36.1630 | |
|
| 0.0028 | 12.63 | 7500 | 0.2787 | 30.5603 | |
|
| 0.0024 | 13.47 | 8000 | 0.2758 | 31.5789 | |
|
| 0.0016 | 14.31 | 8500 | 0.2801 | 33.1919 | |
|
| 0.0018 | 15.15 | 9000 | 0.2779 | 33.9559 | |
|
| 0.0011 | 15.99 | 9500 | 0.2737 | 37.2666 | |
|
| 0.0008 | 16.84 | 10000 | 0.2757 | 31.5789 | |
|
| 0.0005 | 17.68 | 10500 | 0.2787 | 35.6537 | |
|
| 0.0004 | 18.52 | 11000 | 0.2747 | 35.9083 | |
|
| 0.0003 | 19.36 | 11500 | 0.2755 | 40.5772 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|