OCR-LayoutLMv3-Invoice
This model is a fine-tuned version of microsoft/layoutlmv3-base on the wild_receipt dataset. It achieves the following results on the evaluation set:
- Loss: 0.3159
- Precision: 0.8765
- Recall: 0.8812
- F1: 0.8789
- Accuracy: 0.9268
Model description
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.16 | 100 | 1.5032 | 0.4934 | 0.1444 | 0.2234 | 0.6064 |
No log | 0.32 | 200 | 1.0282 | 0.5884 | 0.4420 | 0.5048 | 0.7385 |
No log | 0.47 | 300 | 0.7856 | 0.7448 | 0.6205 | 0.6770 | 0.8133 |
No log | 0.63 | 400 | 0.6464 | 0.7736 | 0.6689 | 0.7174 | 0.8399 |
1.1733 | 0.79 | 500 | 0.5672 | 0.7609 | 0.7303 | 0.7453 | 0.8557 |
1.1733 | 0.95 | 600 | 0.5055 | 0.7658 | 0.7652 | 0.7655 | 0.8677 |
1.1733 | 1.1 | 700 | 0.4735 | 0.7946 | 0.7848 | 0.7897 | 0.8784 |
1.1733 | 1.26 | 800 | 0.4414 | 0.7962 | 0.7946 | 0.7954 | 0.8818 |
1.1733 | 1.42 | 900 | 0.4094 | 0.8176 | 0.8064 | 0.8120 | 0.8894 |
0.5047 | 1.58 | 1000 | 0.3971 | 0.8219 | 0.8248 | 0.8234 | 0.8961 |
0.5047 | 1.74 | 1100 | 0.4082 | 0.7993 | 0.8362 | 0.8174 | 0.8927 |
0.5047 | 1.89 | 1200 | 0.3797 | 0.8240 | 0.8317 | 0.8278 | 0.8962 |
0.5047 | 2.05 | 1300 | 0.3597 | 0.8326 | 0.8331 | 0.8329 | 0.9020 |
0.5047 | 2.21 | 1400 | 0.3544 | 0.8462 | 0.8283 | 0.8371 | 0.9020 |
0.368 | 2.37 | 1500 | 0.3374 | 0.8428 | 0.8435 | 0.8432 | 0.9056 |
0.368 | 2.52 | 1600 | 0.3364 | 0.8406 | 0.8522 | 0.8464 | 0.9089 |
0.368 | 2.68 | 1700 | 0.3404 | 0.8467 | 0.8536 | 0.8501 | 0.9107 |
0.368 | 2.84 | 1800 | 0.3319 | 0.8405 | 0.8501 | 0.8453 | 0.9090 |
0.368 | 3.0 | 1900 | 0.3324 | 0.8584 | 0.8492 | 0.8538 | 0.9117 |
0.2949 | 3.15 | 2000 | 0.3204 | 0.8691 | 0.8404 | 0.8545 | 0.9119 |
0.2949 | 3.31 | 2100 | 0.3107 | 0.8599 | 0.8547 | 0.8573 | 0.9162 |
0.2949 | 3.47 | 2200 | 0.3169 | 0.8680 | 0.8489 | 0.8584 | 0.9146 |
0.2949 | 3.63 | 2300 | 0.3190 | 0.8683 | 0.8519 | 0.8600 | 0.9152 |
0.2949 | 3.79 | 2400 | 0.2975 | 0.8631 | 0.8617 | 0.8624 | 0.9182 |
0.2438 | 3.94 | 2500 | 0.3040 | 0.8566 | 0.8640 | 0.8603 | 0.9171 |
0.2438 | 4.1 | 2600 | 0.3045 | 0.8585 | 0.8642 | 0.8613 | 0.9181 |
0.2438 | 4.26 | 2700 | 0.3139 | 0.8498 | 0.8748 | 0.8621 | 0.9160 |
0.2438 | 4.42 | 2800 | 0.2985 | 0.8642 | 0.8672 | 0.8657 | 0.9214 |
0.2438 | 4.57 | 2900 | 0.3047 | 0.8688 | 0.8694 | 0.8691 | 0.9214 |
0.2028 | 4.73 | 3000 | 0.2986 | 0.8686 | 0.8695 | 0.8691 | 0.9207 |
0.2028 | 4.89 | 3100 | 0.3135 | 0.8628 | 0.8755 | 0.8691 | 0.9197 |
0.2028 | 5.05 | 3200 | 0.2927 | 0.8656 | 0.8755 | 0.8705 | 0.9217 |
0.2028 | 5.21 | 3300 | 0.2992 | 0.8724 | 0.8697 | 0.8711 | 0.9228 |
0.2028 | 5.36 | 3400 | 0.2975 | 0.8831 | 0.8639 | 0.8734 | 0.9244 |
0.1814 | 5.52 | 3500 | 0.2897 | 0.8736 | 0.8788 | 0.8762 | 0.9250 |
0.1814 | 5.68 | 3600 | 0.3118 | 0.8674 | 0.8751 | 0.8712 | 0.9216 |
0.1814 | 5.84 | 3700 | 0.2974 | 0.8735 | 0.8779 | 0.8757 | 0.9237 |
0.1814 | 5.99 | 3800 | 0.2957 | 0.8696 | 0.8815 | 0.8755 | 0.9240 |
0.1814 | 6.15 | 3900 | 0.3120 | 0.8698 | 0.8817 | 0.8757 | 0.9250 |
0.1602 | 6.31 | 4000 | 0.3080 | 0.8715 | 0.8800 | 0.8757 | 0.9238 |
0.1602 | 6.47 | 4100 | 0.3031 | 0.8767 | 0.8788 | 0.8777 | 0.9261 |
0.1602 | 6.62 | 4200 | 0.3146 | 0.8699 | 0.8784 | 0.8741 | 0.9227 |
0.1602 | 6.78 | 4300 | 0.3085 | 0.8717 | 0.8788 | 0.8752 | 0.9248 |
0.1602 | 6.94 | 4400 | 0.3023 | 0.8749 | 0.8756 | 0.8752 | 0.9250 |
0.1383 | 7.1 | 4500 | 0.3025 | 0.8860 | 0.8735 | 0.8797 | 0.9252 |
0.1383 | 7.26 | 4600 | 0.3026 | 0.8775 | 0.8810 | 0.8792 | 0.9272 |
0.1383 | 7.41 | 4700 | 0.3146 | 0.8715 | 0.8832 | 0.8773 | 0.9251 |
0.1383 | 7.57 | 4800 | 0.3113 | 0.8769 | 0.8803 | 0.8786 | 0.9275 |
0.1383 | 7.73 | 4900 | 0.3073 | 0.8797 | 0.8786 | 0.8792 | 0.9261 |
0.1306 | 7.89 | 5000 | 0.3163 | 0.8714 | 0.8828 | 0.8770 | 0.9248 |
0.1306 | 8.04 | 5100 | 0.3163 | 0.8753 | 0.8810 | 0.8781 | 0.9250 |
0.1306 | 8.2 | 5200 | 0.3132 | 0.8743 | 0.8804 | 0.8773 | 0.9257 |
0.1306 | 8.36 | 5300 | 0.3119 | 0.8735 | 0.8837 | 0.8786 | 0.9264 |
0.1306 | 8.52 | 5400 | 0.3145 | 0.8826 | 0.8779 | 0.8802 | 0.9272 |
0.1174 | 8.68 | 5500 | 0.3166 | 0.8776 | 0.8811 | 0.8794 | 0.9261 |
0.1174 | 8.83 | 5600 | 0.3146 | 0.8776 | 0.8814 | 0.8795 | 0.9260 |
0.1174 | 8.99 | 5700 | 0.3135 | 0.8763 | 0.8826 | 0.8795 | 0.9271 |
0.1174 | 9.15 | 5800 | 0.3154 | 0.8794 | 0.8818 | 0.8806 | 0.9275 |
0.1174 | 9.31 | 5900 | 0.3152 | 0.8788 | 0.8817 | 0.8802 | 0.9274 |
0.11 | 9.46 | 6000 | 0.3159 | 0.8765 | 0.8812 | 0.8789 | 0.9268 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 43
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Spaces using jinhybr/OCR-LayoutLMv3-Invoice 3
Evaluation results
- Precision on wild_receiptself-reported0.877
- Recall on wild_receiptself-reported0.881
- F1 on wild_receiptself-reported0.879
- Accuracy on wild_receiptself-reported0.927