metadata
license: mit
base_model: gogamza/kobart-summarization
tags:
- generated_from_trainer
model-index:
- name: summary
results: []
summary
This model is a fine-tuned version of gogamza/kobart-summarization on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4804 | 1.47 | 500 | 0.4035 |
0.2475 | 2.93 | 1000 | 0.4011 |
0.1249 | 4.4 | 1500 | 0.4591 |
0.072 | 5.87 | 2000 | 0.4671 |
0.039 | 7.33 | 2500 | 0.5022 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0