metadata
language:
- es
library_name: transformers
tags:
- generated_from_trainer
- optuna
- shap
- toxic
- toxicity
- news
- tweets
metrics:
- f1
- accuracy
pipeline_tag: text-classification
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-finetuned
results: []
xlm-roberta-base-toxicity (Spanish)
This model is a fine-tuned version of xlm-roberta-base on 2 datasets, labelled with not_toxic (0) / toxic (1) content from news or tweets.
- a private one, provided by @Newtral, containing both tweets and news.
- one used for data augmentation purposes, containing only news, obtained from SurgeHQ.ai
This model can not be used for commercial purposes
Training and evaluation data
The test dataset was provided by @Newtral and was kept fixed.
It achieves the following results on the evaluation set:
- eval_loss: 0.4852
- eval_f1: 0.8009
- eval_accuracy: 0.901
- eval_runtime: 13.6483
- eval_samples_per_second: 366.347
- eval_steps_per_second: 22.933
- epoch: 5.0
- step: 3595
Training procedure
- Cleaning
- Data Augmentation
- Optuna for Grid Search
- Shap for interpretability
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.889038893287002e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 37
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1