LLM basado en LLaMA Ajustado al Dominio de Patología
Primera Versión de un LLM ajustado para responder preguntas de Patología
Uploaded model
- Developed by: jjsprockel
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
Código para descarga: El siguiente es el código sugerido para descargar el modelo usando Unslot:
import torch
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "jjsprockel/Patologia_lora_model1",
max_seq_length = 2048, # Choose any! Llama 3 is up to 8k
dtype = None,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
Código para la inferencia:
El siguiente codigo demuestra como se puede llevar a cabo la inferencia.
instruction = input("Ingresa la pregunta que tengas de Patología: ")
inputs = tokenizer(
[
alpaca_prompt.format(
instruction, # instruction
"", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for jjsprockel/Patologia_lora_model1
Base model
meta-llama/Meta-Llama-3-8B
Quantized
unsloth/llama-3-8b-bnb-4bit