metadata
license: apache-2.0
base_model: NemesisAlm/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.88
distilhubert-finetuned-gtzan
This model is a fine-tuned version of NemesisAlm/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.1532
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-100
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 1e-19
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0011 | 0.27 | 20 | 1.1532 | 0.88 |
0.0081 | 0.53 | 40 | 1.1532 | 0.88 |
0.0005 | 0.8 | 60 | 1.1532 | 0.88 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3