|
--- |
|
language: en |
|
license: mit |
|
tags: |
|
- atc |
|
--- |
|
|
|
# Fine-Tuned Agglomerative Token Clustering - DeiT-Small-Single - ImageNet-1k |
|
|
|
### Model Details |
|
Agglomerative Token Clustering (ATC), a novel hierarchical hard-merging based token reduction method. |
|
|
|
- **Developed by:** Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, and Thomas B. Moeslund |
|
- **Model type:** Vision Transformer |
|
- **License:** MIT |
|
- **Task:** Image Classification |
|
|
|
### Model Card |
|
- **Backbone:** DeiT-Small |
|
- **Token Reduction Method:** ATC |
|
- **Linkage Function:** Single |
|
- **Reduction Ratio:** {0.25, 0.5, 0.7, 0.9} |
|
- **Reduction Stages:** 3, 6, 9 |
|
|
|
### More Resources |
|
- **Repository:** [https://github.com/JoakimHaurum/ATC](https://github.com/JoakimHaurum/ATC) |
|
- **Paper:** [TBD](TBD) |
|
- **Project Page:** [https://vap.aau.dk/atc](https://vap.aau.dk/atc) |
|
- **HuggingFace Collection:** [https://huggingface.co/collections/joakimbh/agglomerative-token-clustering-66e94dfb313e85ec97590fe4](https://huggingface.co/collections/joakimbh/agglomerative-token-clustering-66e94dfb313e85ec97590fe4) |
|
|
|
### Use |
|
The model files contain both standard and EMA model parameters. The version which gave the best performance is indicated with the "ema_best" boolean. |
|
|