mywslHFrepo / README.md
joaoxg's picture
Paste README info from DagsHub/Cookiecutter-MLOps
c01f716
|
raw
history blame
4.28 kB
---
license: apache-2.0
---
Cookiecutter-MLOps
==============================
A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while
having MLOps best practices applied.
Instructions
------------
1. Clone the repo.
2. Run `make dirs` to create the missing parts of the directory structure described below.
3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
1. Run `source env/bin/activate` to activate the virtualenv.
4. Run `make requirements` to install required python packages.
5. Put the raw data in `data/raw`.
6. To save the raw data to the DVC cache, run `dvc add data/raw`
7. Edit the code files to your heart's desire.
8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce`
9. To run the pre-commit hooks, run `make pre-commit-install`
10. For setting up data validation tests, run `make setup-setup-data-validation`
11. For **running** the data validation tests, run `make run-data-validation`
12. When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
------------
β”œβ”€β”€ LICENSE
β”œβ”€β”€ Makefile <- Makefile with commands like `make dirs` or `make clean`
β”œβ”€β”€ README.md <- The top-level README for developers using this project.
β”œβ”€β”€ data
β”‚Β Β  β”œβ”€β”€ processed <- The final, canonical data sets for modeling.
β”‚Β Β  └── raw <- The original, immutable data dump
β”‚
β”œβ”€β”€ models <- Trained and serialized models, model predictions, or model summaries
β”‚
β”œβ”€β”€ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β”‚ the creator's initials, and a short `-` delimited description, e.g.
β”‚ `1.0-jqp-initial-data-exploration`.
β”œβ”€β”€ references <- Data dictionaries, manuals, and all other explanatory materials.
β”œβ”€β”€ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
β”‚Β Β  └── figures <- Generated graphics and figures to be used in reporting
β”‚Β Β  └── metrics.txt <- Relevant metrics after evaluating the model.
β”‚Β Β  └── training_metrics.txt <- Relevant metrics from training the model.
β”‚
β”œβ”€β”€ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
β”‚ generated with `pip freeze > requirements.txt`
β”‚
β”œβ”€β”€ setup.py <- makes project pip installable (pip install -e .) so src can be imported
β”œβ”€β”€ src <- Source code for use in this project.
β”‚Β Β  β”œβ”€β”€ __init__.py <- Makes src a Python module
β”‚ β”‚
β”‚Β Β  β”œβ”€β”€ data <- Scripts to download or generate data
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ great_expectations <- Folder containing data integrity check files
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ make_dataset.py
β”‚Β Β  β”‚Β Β  └── data_validation.py <- Script to run data integrity checks
β”‚ β”‚
β”‚Β Β  β”œβ”€β”€ models <- Scripts to train models and then use trained models to make
β”‚ β”‚ β”‚ predictions
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
β”‚Β Β  β”‚Β Β  └── train_model.py
β”‚ β”‚
β”‚Β Β  └── visualization <- Scripts to create exploratory and results oriented visualizations
β”‚Β Β  └── visualize.py
β”‚
β”œβ”€β”€ .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects.
β”œβ”€β”€ dvc.lock <- constructs the ML pipeline with defined stages.
└── dvc.yaml <- Traing a model on the processed data.
--------
<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
---
To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.
Made with 🐢 by [DAGsHub](https://dagshub.com/).