File size: 31,201 Bytes
b610ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
---
base_model: answerdotai/ModernBERT-base
datasets:
- lightonai/ms-marco-en-bge
language:
- en
library_name: PyLate
pipeline_tag: sentence-similarity
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:808728
- loss:Distillation
---

# PyLate model based on answerdotai/ModernBERT-base

This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

## Model Details

### Model Description
- **Model Type:** PyLate model
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 -->
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
    - [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)

### Full Model Architecture

```
ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Usage
First install the PyLate library:

```bash
pip install -U pylate
```

### Retrieval 

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

#### Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

```python
from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)
```

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)
```

#### Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings, 
    k=10,  # Retrieve the top 10 matches for each query
)
```

### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

```python
from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge) at [11e6ffa](https://huggingface.co/datasets/lightonai/ms-marco-en-bge/tree/11e6ffa1d22f461579f451eb31bdc964244cb61f)
* Size: 808,728 training samples
* Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code>
* Approximate statistics based on the first 1000 samples:
  |         | query_id                                                                        | document_ids                        | scores                              |
  |:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
  | type    | string                                                                          | list                                | list                                |
  | details | <ul><li>min: 5 tokens</li><li>mean: 5.59 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> |
* Samples:
  | query_id            | document_ids                                                              | scores                                                                                                                 |
  |:--------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
  | <code>121352</code> | <code>['2259784', '4923159', '40211', '1545154', '8527175', ...]</code>   | <code>[0.2343463897705078, 0.639204204082489, 0.3806908428668976, 0.5623092651367188, 0.8051995635032654, ...]</code>  |
  | <code>634306</code> | <code>['7723525', '1874779', '379307', '2738583', '7599583', ...]</code>  | <code>[0.7124203443527222, 0.7379189729690552, 0.5786551237106323, 0.6142299175262451, 0.6755089163780212, ...]</code> |
  | <code>920825</code> | <code>['5976297', '2866112', '3560294', '3285659', '4706740', ...]</code> | <code>[0.6462352871894836, 0.7880821228027344, 0.791019856929779, 0.7709633111953735, 0.8284491300582886, ...]</code>  |
* Loss: <code>pylate.losses.distillation.Distillation</code>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 8e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `tf32`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0020 | 100   | 0.0524        |
| 0.0040 | 200   | 0.0482        |
| 0.0059 | 300   | 0.0464        |
| 0.0079 | 400   | 0.043         |
| 0.0099 | 500   | 0.0387        |
| 0.0119 | 600   | 0.0383        |
| 0.0138 | 700   | 0.0345        |
| 0.0158 | 800   | 0.0307        |
| 0.0178 | 900   | 0.0294        |
| 0.0198 | 1000  | 0.0275        |
| 0.0218 | 1100  | 0.0271        |
| 0.0237 | 1200  | 0.0264        |
| 0.0257 | 1300  | 0.0258        |
| 0.0277 | 1400  | 0.0246        |
| 0.0297 | 1500  | 0.0239        |
| 0.0317 | 1600  | 0.023         |
| 0.0336 | 1700  | 0.0216        |
| 0.0356 | 1800  | 0.0282        |
| 0.0376 | 1900  | 0.0211        |
| 0.0396 | 2000  | 0.0205        |
| 0.0415 | 2100  | 0.0197        |
| 0.0435 | 2200  | 0.0187        |
| 0.0455 | 2300  | 0.0184        |
| 0.0475 | 2400  | 0.0177        |
| 0.0495 | 2500  | 0.0179        |
| 0.0514 | 2600  | 0.0173        |
| 0.0534 | 2700  | 0.0169        |
| 0.0554 | 2800  | 0.0163        |
| 0.0574 | 2900  | 0.016         |
| 0.0594 | 3000  | 0.016         |
| 0.0613 | 3100  | 0.0147        |
| 0.0633 | 3200  | 0.0148        |
| 0.0653 | 3300  | 0.0155        |
| 0.0673 | 3400  | 0.0149        |
| 0.0692 | 3500  | 0.0149        |
| 0.0712 | 3600  | 0.0141        |
| 0.0732 | 3700  | 0.0145        |
| 0.0752 | 3800  | 0.0142        |
| 0.0772 | 3900  | 0.0143        |
| 0.0791 | 4000  | 0.0137        |
| 0.0811 | 4100  | 0.0134        |
| 0.0831 | 4200  | 0.0129        |
| 0.0851 | 4300  | 0.0133        |
| 0.0871 | 4400  | 0.0135        |
| 0.0890 | 4500  | 0.0128        |
| 0.0910 | 4600  | 0.0126        |
| 0.0930 | 4700  | 0.0126        |
| 0.0950 | 4800  | 0.0129        |
| 0.0969 | 4900  | 0.0127        |
| 0.0989 | 5000  | 0.0127        |
| 0.1009 | 5100  | 0.0125        |
| 0.1029 | 5200  | 0.0119        |
| 0.1049 | 5300  | 0.0124        |
| 0.1068 | 5400  | 0.012         |
| 0.1088 | 5500  | 0.013         |
| 0.1108 | 5600  | 0.0119        |
| 0.1128 | 5700  | 0.0118        |
| 0.1147 | 5800  | 0.0121        |
| 0.1167 | 5900  | 0.0119        |
| 0.1187 | 6000  | 0.0116        |
| 0.1207 | 6100  | 0.0112        |
| 0.1227 | 6200  | 0.0116        |
| 0.1246 | 6300  | 0.0115        |
| 0.1266 | 6400  | 0.0119        |
| 0.1286 | 6500  | 0.0115        |
| 0.1306 | 6600  | 0.0109        |
| 0.1326 | 6700  | 0.0114        |
| 0.1345 | 6800  | 0.0114        |
| 0.1365 | 6900  | 0.0109        |
| 0.1385 | 7000  | 0.011         |
| 0.1405 | 7100  | 0.0111        |
| 0.1424 | 7200  | 0.0109        |
| 0.1444 | 7300  | 0.0108        |
| 0.1464 | 7400  | 0.0112        |
| 0.1484 | 7500  | 0.0106        |
| 0.1504 | 7600  | 0.011         |
| 0.1523 | 7700  | 0.0106        |
| 0.1543 | 7800  | 0.0107        |
| 0.1563 | 7900  | 0.0108        |
| 0.1583 | 8000  | 0.0106        |
| 0.1603 | 8100  | 0.0107        |
| 0.1622 | 8200  | 0.0108        |
| 0.1642 | 8300  | 0.0103        |
| 0.1662 | 8400  | 0.0107        |
| 0.1682 | 8500  | 0.0104        |
| 0.1701 | 8600  | 0.011         |
| 0.1721 | 8700  | 0.0105        |
| 0.1741 | 8800  | 0.0105        |
| 0.1761 | 8900  | 0.01          |
| 0.1781 | 9000  | 0.0106        |
| 0.1800 | 9100  | 0.0105        |
| 0.1820 | 9200  | 0.0104        |
| 0.1840 | 9300  | 0.0104        |
| 0.1860 | 9400  | 0.0107        |
| 0.1879 | 9500  | 0.0102        |
| 0.1899 | 9600  | 0.0103        |
| 0.1919 | 9700  | 0.0105        |
| 0.1939 | 9800  | 0.01          |
| 0.1959 | 9900  | 0.0098        |
| 0.1978 | 10000 | 0.0099        |
| 0.1998 | 10100 | 0.0099        |
| 0.2018 | 10200 | 0.0099        |
| 0.2038 | 10300 | 0.0098        |
| 0.2058 | 10400 | 0.01          |
| 0.2077 | 10500 | 0.0101        |
| 0.2097 | 10600 | 0.0098        |
| 0.2117 | 10700 | 0.0101        |
| 0.2137 | 10800 | 0.0098        |
| 0.2156 | 10900 | 0.0101        |
| 0.2176 | 11000 | 0.01          |
| 0.2196 | 11100 | 0.01          |
| 0.2216 | 11200 | 0.0096        |
| 0.2236 | 11300 | 0.0096        |
| 0.2255 | 11400 | 0.0096        |
| 0.2275 | 11500 | 0.0098        |
| 0.2295 | 11600 | 0.0099        |
| 0.2315 | 11700 | 0.0094        |
| 0.2335 | 11800 | 0.0096        |
| 0.2354 | 11900 | 0.0094        |
| 0.2374 | 12000 | 0.0098        |
| 0.2394 | 12100 | 0.0095        |
| 0.2414 | 12200 | 0.0095        |
| 0.2433 | 12300 | 0.0098        |
| 0.2453 | 12400 | 0.0097        |
| 0.2473 | 12500 | 0.0094        |
| 0.2493 | 12600 | 0.0093        |
| 0.2513 | 12700 | 0.0093        |
| 0.2532 | 12800 | 0.0092        |
| 0.2552 | 12900 | 0.0094        |
| 0.2572 | 13000 | 0.0095        |
| 0.2592 | 13100 | 0.0093        |
| 0.2612 | 13200 | 0.009         |
| 0.2631 | 13300 | 0.0087        |
| 0.2651 | 13400 | 0.0089        |
| 0.2671 | 13500 | 0.009         |
| 0.2691 | 13600 | 0.0091        |
| 0.2710 | 13700 | 0.0092        |
| 0.2730 | 13800 | 0.0089        |
| 0.2750 | 13900 | 0.0091        |
| 0.2770 | 14000 | 0.0092        |
| 0.2790 | 14100 | 0.0088        |
| 0.2809 | 14200 | 0.009         |
| 0.2829 | 14300 | 0.0091        |
| 0.2849 | 14400 | 0.0086        |
| 0.2869 | 14500 | 0.009         |
| 0.2888 | 14600 | 0.0088        |
| 0.2908 | 14700 | 0.0092        |
| 0.2928 | 14800 | 0.009         |
| 0.2948 | 14900 | 0.0088        |
| 0.2968 | 15000 | 0.0087        |
| 0.2987 | 15100 | 0.0085        |
| 0.3007 | 15200 | 0.009         |
| 0.3027 | 15300 | 0.0088        |
| 0.3047 | 15400 | 0.0086        |
| 0.3067 | 15500 | 0.0087        |
| 0.3086 | 15600 | 0.0088        |
| 0.3106 | 15700 | 0.0085        |
| 0.3126 | 15800 | 0.0088        |
| 0.3146 | 15900 | 0.0085        |
| 0.3165 | 16000 | 0.0086        |
| 0.3185 | 16100 | 0.0086        |
| 0.3205 | 16200 | 0.0087        |
| 0.3225 | 16300 | 0.0088        |
| 0.3245 | 16400 | 0.0087        |
| 0.3264 | 16500 | 0.0087        |
| 0.3284 | 16600 | 0.0086        |
| 0.3304 | 16700 | 0.0087        |
| 0.3324 | 16800 | 0.0092        |
| 0.3344 | 16900 | 0.0085        |
| 0.3363 | 17000 | 0.0088        |
| 0.3383 | 17100 | 0.0084        |
| 0.3403 | 17200 | 0.0088        |
| 0.3423 | 17300 | 0.0083        |
| 0.3442 | 17400 | 0.0085        |
| 0.3462 | 17500 | 0.0083        |
| 0.3482 | 17600 | 0.0084        |
| 0.3502 | 17700 | 0.0084        |
| 0.3522 | 17800 | 0.0083        |
| 0.3541 | 17900 | 0.0087        |
| 0.3561 | 18000 | 0.0083        |
| 0.3581 | 18100 | 0.0085        |
| 0.3601 | 18200 | 0.0082        |
| 0.3621 | 18300 | 0.0079        |
| 0.3640 | 18400 | 0.0085        |
| 0.3660 | 18500 | 0.0084        |
| 0.3680 | 18600 | 0.0082        |
| 0.3700 | 18700 | 0.0083        |
| 0.3719 | 18800 | 0.0082        |
| 0.3739 | 18900 | 0.0082        |
| 0.3759 | 19000 | 0.0083        |
| 0.3779 | 19100 | 0.0081        |
| 0.3799 | 19200 | 0.0083        |
| 0.3818 | 19300 | 0.0079        |
| 0.3838 | 19400 | 0.0083        |
| 0.3858 | 19500 | 0.0082        |
| 0.3878 | 19600 | 0.0084        |
| 0.3897 | 19700 | 0.0084        |
| 0.3917 | 19800 | 0.008         |
| 0.3937 | 19900 | 0.0081        |
| 0.3957 | 20000 | 0.0083        |
| 0.3977 | 20100 | 0.0082        |
| 0.3996 | 20200 | 0.0078        |
| 0.4016 | 20300 | 0.0079        |
| 0.4036 | 20400 | 0.0081        |
| 0.4056 | 20500 | 0.0085        |
| 0.4076 | 20600 | 0.0082        |
| 0.4095 | 20700 | 0.008         |
| 0.4115 | 20800 | 0.0079        |
| 0.4135 | 20900 | 0.0081        |
| 0.4155 | 21000 | 0.008         |
| 0.4174 | 21100 | 0.0079        |
| 0.4194 | 21200 | 0.0077        |
| 0.4214 | 21300 | 0.0078        |
| 0.4234 | 21400 | 0.0082        |
| 0.4254 | 21500 | 0.008         |
| 0.4273 | 21600 | 0.0076        |
| 0.4293 | 21700 | 0.0075        |
| 0.4313 | 21800 | 0.0078        |
| 0.4333 | 21900 | 0.0081        |
| 0.4353 | 22000 | 0.0077        |
| 0.4372 | 22100 | 0.0079        |
| 0.4392 | 22200 | 0.0078        |
| 0.4412 | 22300 | 0.0078        |
| 0.4432 | 22400 | 0.0077        |
| 0.4451 | 22500 | 0.0078        |
| 0.4471 | 22600 | 0.0079        |
| 0.4491 | 22700 | 0.0078        |
| 0.4511 | 22800 | 0.0079        |
| 0.4531 | 22900 | 0.0075        |
| 0.4550 | 23000 | 0.0077        |
| 0.4570 | 23100 | 0.0076        |
| 0.4590 | 23200 | 0.0078        |
| 0.4610 | 23300 | 0.0075        |
| 0.4629 | 23400 | 0.0075        |
| 0.4649 | 23500 | 0.0078        |
| 0.4669 | 23600 | 0.0075        |
| 0.4689 | 23700 | 0.0076        |
| 0.4709 | 23800 | 0.0075        |
| 0.4728 | 23900 | 0.0075        |
| 0.4748 | 24000 | 0.0075        |
| 0.4768 | 24100 | 0.0076        |
| 0.4788 | 24200 | 0.0079        |
| 0.4808 | 24300 | 0.0076        |
| 0.4827 | 24400 | 0.0077        |
| 0.4847 | 24500 | 0.0077        |
| 0.4867 | 24600 | 0.0073        |
| 0.4887 | 24700 | 0.0077        |
| 0.4906 | 24800 | 0.0076        |
| 0.4926 | 24900 | 0.0075        |
| 0.4946 | 25000 | 0.0076        |
| 0.4966 | 25100 | 0.0078        |
| 0.4986 | 25200 | 0.0077        |
| 0.5005 | 25300 | 0.0076        |
| 0.5025 | 25400 | 0.0076        |
| 0.5045 | 25500 | 0.0076        |
| 0.5065 | 25600 | 0.0073        |
| 0.5085 | 25700 | 0.0075        |
| 0.5104 | 25800 | 0.0072        |
| 0.5124 | 25900 | 0.0074        |
| 0.5144 | 26000 | 0.0075        |
| 0.5164 | 26100 | 0.0075        |
| 0.5183 | 26200 | 0.0072        |
| 0.5203 | 26300 | 0.0073        |
| 0.5223 | 26400 | 0.0073        |
| 0.5243 | 26500 | 0.0073        |
| 0.5263 | 26600 | 0.0076        |
| 0.5282 | 26700 | 0.0075        |
| 0.5302 | 26800 | 0.0075        |
| 0.5322 | 26900 | 0.0071        |
| 0.5342 | 27000 | 0.0074        |
| 0.5362 | 27100 | 0.0073        |
| 0.5381 | 27200 | 0.0072        |
| 0.5401 | 27300 | 0.0071        |
| 0.5421 | 27400 | 0.0073        |
| 0.5441 | 27500 | 0.0072        |
| 0.5460 | 27600 | 0.0076        |
| 0.5480 | 27700 | 0.0072        |
| 0.5500 | 27800 | 0.0074        |
| 0.5520 | 27900 | 0.0072        |
| 0.5540 | 28000 | 0.0072        |
| 0.5559 | 28100 | 0.0071        |
| 0.5579 | 28200 | 0.0069        |
| 0.5599 | 28300 | 0.0071        |
| 0.5619 | 28400 | 0.0075        |
| 0.5638 | 28500 | 0.0074        |
| 0.5658 | 28600 | 0.0072        |
| 0.5678 | 28700 | 0.0074        |
| 0.5698 | 28800 | 0.0072        |
| 0.5718 | 28900 | 0.0072        |
| 0.5737 | 29000 | 0.0073        |
| 0.5757 | 29100 | 0.0072        |
| 0.5777 | 29200 | 0.0069        |
| 0.5797 | 29300 | 0.0069        |
| 0.5817 | 29400 | 0.007         |
| 0.5836 | 29500 | 0.0071        |
| 0.5856 | 29600 | 0.007         |
| 0.5876 | 29700 | 0.0069        |
| 0.5896 | 29800 | 0.0072        |
| 0.5915 | 29900 | 0.007         |
| 0.5935 | 30000 | 0.007         |
| 0.5955 | 30100 | 0.007         |
| 0.5975 | 30200 | 0.0069        |
| 0.5995 | 30300 | 0.0068        |
| 0.6014 | 30400 | 0.0071        |
| 0.6034 | 30500 | 0.007         |
| 0.6054 | 30600 | 0.0071        |
| 0.6074 | 30700 | 0.007         |
| 0.6094 | 30800 | 0.0069        |
| 0.6113 | 30900 | 0.007         |
| 0.6133 | 31000 | 0.0071        |
| 0.6153 | 31100 | 0.0069        |
| 0.6173 | 31200 | 0.007         |
| 0.6192 | 31300 | 0.0068        |
| 0.6212 | 31400 | 0.0069        |
| 0.6232 | 31500 | 0.0068        |
| 0.6252 | 31600 | 0.0068        |
| 0.6272 | 31700 | 0.007         |
| 0.6291 | 31800 | 0.0068        |
| 0.6311 | 31900 | 0.0069        |
| 0.6331 | 32000 | 0.0068        |
| 0.6351 | 32100 | 0.0069        |
| 0.6370 | 32200 | 0.0066        |
| 0.6390 | 32300 | 0.0068        |
| 0.6410 | 32400 | 0.0067        |
| 0.6430 | 32500 | 0.0068        |
| 0.6450 | 32600 | 0.0069        |
| 0.6469 | 32700 | 0.0068        |
| 0.6489 | 32800 | 0.0065        |
| 0.6509 | 32900 | 0.0068        |
| 0.6529 | 33000 | 0.0067        |
| 0.6549 | 33100 | 0.0066        |
| 0.6568 | 33200 | 0.0069        |
| 0.6588 | 33300 | 0.0067        |
| 0.6608 | 33400 | 0.0067        |
| 0.6628 | 33500 | 0.0068        |
| 0.6647 | 33600 | 0.0066        |
| 0.6667 | 33700 | 0.0069        |
| 0.6687 | 33800 | 0.0069        |
| 0.6707 | 33900 | 0.0064        |
| 0.6727 | 34000 | 0.0065        |
| 0.6746 | 34100 | 0.0067        |
| 0.6766 | 34200 | 0.0063        |
| 0.6786 | 34300 | 0.0067        |
| 0.6806 | 34400 | 0.0066        |
| 0.6826 | 34500 | 0.0065        |
| 0.6845 | 34600 | 0.0064        |
| 0.6865 | 34700 | 0.0066        |
| 0.6885 | 34800 | 0.0065        |
| 0.6905 | 34900 | 0.0064        |
| 0.6924 | 35000 | 0.0066        |
| 0.6944 | 35100 | 0.0064        |
| 0.6964 | 35200 | 0.0064        |
| 0.6984 | 35300 | 0.0066        |
| 0.7004 | 35400 | 0.0065        |
| 0.7023 | 35500 | 0.0067        |
| 0.7043 | 35600 | 0.0065        |
| 0.7063 | 35700 | 0.0064        |
| 0.7083 | 35800 | 0.0066        |
| 0.7103 | 35900 | 0.0065        |
| 0.7122 | 36000 | 0.0067        |
| 0.7142 | 36100 | 0.0069        |
| 0.7162 | 36200 | 0.0065        |
| 0.7182 | 36300 | 0.0064        |
| 0.7201 | 36400 | 0.0064        |
| 0.7221 | 36500 | 0.0066        |
| 0.7241 | 36600 | 0.0065        |
| 0.7261 | 36700 | 0.0062        |
| 0.7281 | 36800 | 0.0068        |
| 0.7300 | 36900 | 0.0064        |
| 0.7320 | 37000 | 0.0067        |
| 0.7340 | 37100 | 0.0063        |
| 0.7360 | 37200 | 0.0063        |
| 0.7379 | 37300 | 0.0064        |
| 0.7399 | 37400 | 0.0066        |
| 0.7419 | 37500 | 0.0065        |
| 0.7439 | 37600 | 0.0064        |
| 0.7459 | 37700 | 0.0065        |
| 0.7478 | 37800 | 0.0064        |
| 0.7498 | 37900 | 0.0063        |
| 0.7518 | 38000 | 0.0062        |
| 0.7538 | 38100 | 0.0064        |
| 0.7558 | 38200 | 0.0062        |
| 0.7577 | 38300 | 0.0064        |
| 0.7597 | 38400 | 0.0063        |
| 0.7617 | 38500 | 0.0063        |
| 0.7637 | 38600 | 0.0065        |
| 0.7656 | 38700 | 0.0063        |
| 0.7676 | 38800 | 0.0064        |
| 0.7696 | 38900 | 0.0062        |
| 0.7716 | 39000 | 0.0062        |
| 0.7736 | 39100 | 0.0062        |
| 0.7755 | 39200 | 0.0063        |
| 0.7775 | 39300 | 0.0065        |
| 0.7795 | 39400 | 0.0061        |
| 0.7815 | 39500 | 0.0062        |
| 0.7835 | 39600 | 0.0063        |
| 0.7854 | 39700 | 0.0062        |
| 0.7874 | 39800 | 0.0062        |
| 0.7894 | 39900 | 0.0063        |
| 0.7914 | 40000 | 0.0059        |
| 0.7933 | 40100 | 0.0063        |
| 0.7953 | 40200 | 0.0064        |
| 0.7973 | 40300 | 0.006         |
| 0.7993 | 40400 | 0.0063        |
| 0.8013 | 40500 | 0.0061        |
| 0.8032 | 40600 | 0.0061        |
| 0.8052 | 40700 | 0.0062        |
| 0.8072 | 40800 | 0.0062        |
| 0.8092 | 40900 | 0.006         |
| 0.8112 | 41000 | 0.0061        |
| 0.8131 | 41100 | 0.0063        |
| 0.8151 | 41200 | 0.0059        |
| 0.8171 | 41300 | 0.0062        |
| 0.8191 | 41400 | 0.0062        |
| 0.8210 | 41500 | 0.0062        |
| 0.8230 | 41600 | 0.0062        |
| 0.8250 | 41700 | 0.0061        |
| 0.8270 | 41800 | 0.0061        |
| 0.8290 | 41900 | 0.0061        |
| 0.8309 | 42000 | 0.0063        |
| 0.8329 | 42100 | 0.0064        |
| 0.8349 | 42200 | 0.0063        |
| 0.8369 | 42300 | 0.0063        |
| 0.8388 | 42400 | 0.0061        |
| 0.8408 | 42500 | 0.0062        |
| 0.8428 | 42600 | 0.0062        |
| 0.8448 | 42700 | 0.0061        |
| 0.8468 | 42800 | 0.0059        |
| 0.8487 | 42900 | 0.006         |
| 0.8507 | 43000 | 0.0061        |
| 0.8527 | 43100 | 0.0062        |
| 0.8547 | 43200 | 0.0058        |
| 0.8567 | 43300 | 0.0065        |
| 0.8586 | 43400 | 0.0064        |
| 0.8606 | 43500 | 0.006         |
| 0.8626 | 43600 | 0.0061        |
| 0.8646 | 43700 | 0.0059        |
| 0.8665 | 43800 | 0.0063        |
| 0.8685 | 43900 | 0.0061        |
| 0.8705 | 44000 | 0.006         |
| 0.8725 | 44100 | 0.0061        |
| 0.8745 | 44200 | 0.0061        |
| 0.8764 | 44300 | 0.0059        |
| 0.8784 | 44400 | 0.006         |
| 0.8804 | 44500 | 0.006         |
| 0.8824 | 44600 | 0.0059        |
| 0.8844 | 44700 | 0.0062        |
| 0.8863 | 44800 | 0.006         |
| 0.8883 | 44900 | 0.006         |
| 0.8903 | 45000 | 0.0058        |
| 0.8923 | 45100 | 0.006         |
| 0.8942 | 45200 | 0.0061        |
| 0.8962 | 45300 | 0.006         |
| 0.8982 | 45400 | 0.0059        |
| 0.9002 | 45500 | 0.0059        |
| 0.9022 | 45600 | 0.006         |
| 0.9041 | 45700 | 0.0062        |
| 0.9061 | 45800 | 0.0056        |
| 0.9081 | 45900 | 0.0057        |
| 0.9101 | 46000 | 0.006         |
| 0.9120 | 46100 | 0.0059        |
| 0.9140 | 46200 | 0.006         |
| 0.9160 | 46300 | 0.0059        |
| 0.9180 | 46400 | 0.0062        |
| 0.9200 | 46500 | 0.0059        |
| 0.9219 | 46600 | 0.0059        |
| 0.9239 | 46700 | 0.006         |
| 0.9259 | 46800 | 0.0059        |
| 0.9279 | 46900 | 0.0058        |
| 0.9299 | 47000 | 0.0057        |
| 0.9318 | 47100 | 0.0058        |
| 0.9338 | 47200 | 0.0058        |
| 0.9358 | 47300 | 0.0059        |
| 0.9378 | 47400 | 0.0059        |
| 0.9397 | 47500 | 0.0058        |
| 0.9417 | 47600 | 0.006         |
| 0.9437 | 47700 | 0.0058        |
| 0.9457 | 47800 | 0.006         |
| 0.9477 | 47900 | 0.0059        |
| 0.9496 | 48000 | 0.0058        |
| 0.9516 | 48100 | 0.0057        |
| 0.9536 | 48200 | 0.006         |
| 0.9556 | 48300 | 0.0057        |
| 0.9576 | 48400 | 0.006         |
| 0.9595 | 48500 | 0.0058        |
| 0.9615 | 48600 | 0.0058        |
| 0.9635 | 48700 | 0.0058        |
| 0.9655 | 48800 | 0.0057        |
| 0.9674 | 48900 | 0.0058        |
| 0.9694 | 49000 | 0.006         |
| 0.9714 | 49100 | 0.0055        |
| 0.9734 | 49200 | 0.0058        |
| 0.9754 | 49300 | 0.0059        |
| 0.9773 | 49400 | 0.0057        |
| 0.9793 | 49500 | 0.0055        |
| 0.9813 | 49600 | 0.0059        |
| 0.9833 | 49700 | 0.0058        |
| 0.9853 | 49800 | 0.0059        |
| 0.9872 | 49900 | 0.0058        |
| 0.9892 | 50000 | 0.0056        |
| 0.9912 | 50100 | 0.0058        |
| 0.9932 | 50200 | 0.0058        |
| 0.9951 | 50300 | 0.0059        |
| 0.9971 | 50400 | 0.0059        |
| 0.9991 | 50500 | 0.006         |

</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.0
- PyLate: 1.1.4
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0


## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}
```

#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->