Edit model card

legal-italian-roberta-base

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: tpu
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 1000000

Training results

Training Loss Epoch Step Validation Loss
1.0248 0.05 50000 0.8033
0.912 0.1 100000 0.6825
0.8853 1.0 150000 0.6205
0.847 1.05 200000 0.5954
0.8395 1.1 250000 0.5859
0.7485 2.01 300000 0.5632
0.7154 2.06 350000 0.5495
0.6851 2.11 400000 0.5456
0.6074 3.01 450000 0.5331
0.6296 3.06 500000 0.5226
0.6125 3.11 550000 0.5146
0.5983 4.02 600000 0.5038
0.6471 4.07 650000 0.4976
0.633 4.12 700000 0.4982
0.6917 5.02 750000 0.4906
0.7178 5.07 800000 0.4833
0.6988 5.12 850000 0.4754
0.7135 6.02 900000 0.4734
0.7269 6.07 950000 0.4826
0.7085 6.12 1000000 0.4799

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu102
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collections including joelniklaus/legal-italian-roberta-base