wav2vec2-jv-base-openslr
This model is a fine-tuned version of facebook/wav2vec2-base on the OpenSLR41 datasets. It achieves the following results on the evaluation set:
- Loss: 0.2843
- Wer: 0.1502
Model description
The model is a fine-tuned version of wav2vec2, specifically adapted using the OpenSLR 41 dataset, which is focused on the Javanese language domain. This adaptation enables the model to effectively recognize and process spoken Javanese, leveraging the robust capabilities of the wav2vec2 architecture combined with domain-specific training data.
Intended uses & limitations
This model is intended for transcribing spoken Javanese language from audio recordings. It achieves a Word Error Rate (WER) of 15%, indicating that while the model performs reasonably well, it still produces significant transcription errors. Users should be aware that the accuracy may vary, particularly in cases with challenging audio conditions or less common dialects. Additionally, this model requires input audio at a sample rate of 16kHz, which may limit its applicability for recordings at different sample rates or lower quality audio files.
Training and evaluation data
The model use OpenSLR41 datasets, and split into 2 section (training and testing), then the model is trained using 1xA100 GPU with a training duration of 4-5 hours.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 65
- mixed_precision_training: Native AMP
Log Data | Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5361 | 2.8329 | 2000 | 0.4626 | 0.4238 |
0.332 | 5.6657 | 4000 | 0.3857 | 0.3749 |
0.242 | 8.4986 | 6000 | 0.3456 | 0.3060 |
0.1893 | 11.3314 | 8000 | 0.3250 | 0.2846 |
0.1566 | 14.1643 | 10000 | 0.3260 | 0.2640 |
0.1433 | 16.9972 | 12000 | 0.2891 | 0.2516 |
0.124 | 19.8300 | 14000 | 0.3172 | 0.2433 |
0.1103 | 22.6629 | 16000 | 0.3099 | 0.2453 |
0.1015 | 25.4958 | 18000 | 0.3087 | 0.2295 |
0.088 | 28.3286 | 20000 | 0.3250 | 0.2054 |
0.0831 | 31.1615 | 22000 | 0.3127 | 0.2143 |
0.0748 | 33.9943 | 24000 | 0.2973 | 0.1923 |
0.0696 | 36.8272 | 26000 | 0.3103 | 0.2026 |
0.0622 | 39.6601 | 28000 | 0.3292 | 0.2068 |
0.0564 | 42.4929 | 30000 | 0.2965 | 0.1916 |
0.0507 | 45.3258 | 32000 | 0.3061 | 0.1819 |
0.0475 | 48.1586 | 34000 | 0.2784 | 0.1881 |
0.0448 | 50.9915 | 36000 | 0.2872 | 0.1764 |
0.0413 | 53.8244 | 38000 | 0.2854 | 0.1716 |
0.0357 | 56.6572 | 40000 | 0.2862 | 0.1723 |
0.0328 | 59.4901 | 42000 | 0.2887 | 0.1654 |
0.0324 | 62.3229 | 44000 | 0.2843 | 0.1502 |
How to run (Gradio Web)
import torch
import torchaudio
import gradio as gr
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForCTC
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model and processor
MODEL_NAME = "<fill this to your model>"
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
# Move model to GPU
model.to(device)
# Create the pipeline with the model and processor
transcriber = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device)
def transcribe(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
return transcriber({"sampling_rate": sr, "raw": y})["text"]
demo = gr.Interface(
transcribe,
gr.Audio(sources=["upload"]),
"text",
)
demo.launch(share=True)
How to run
import torch
import torchaudio
import gradio as gr
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForCTC
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model and processor
MODEL_NAME = "<fill this to actual model>"
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
# Move model to GPU
model.to(device)
# Load audio file
AUDIO_PATH = "<replace 'path_to_audio_file.wav' with the actual path to your audio file>"
audio_input, sample_rate = torchaudio.load(AUDIO_PATH)
# Ensure the audio is mono (1 channel)
if audio_input.shape[0] > 1:
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
# Resample audio if necessary
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
audio_input = resampler(audio_input)
# Process the audio input
input_values = processor(audio_input.squeeze(), sampling_rate=16000, return_tensors="pt").input_values
# Move input values to GPU
input_values = input_values.to(device)
# Perform inference
with torch.no_grad():
logits = model(input_values).logits
# Decode the logits to text
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print("Transcription:", transcription)
Framework versions
- Transformers 4.44.0
- Pytorch 2.2.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for johaness14/wav2vec2-jv-base-openslr
Base model
facebook/wav2vec2-base