SentenceTransformer
This is a sentence-transformers model based on a custom ModernBERT-Small architecture, trained from scratch using a multi-stage pipeline. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
This is a shallow model with wide layers. NOT RECOMMENDED for production. This was my first attempt of training a ModernBERT model from scratch. The wide component is a mistake on my part due to lack of understanding of the gegelu design.
ModernBERT-small-1.5 will address the limitations of this design.
small_modernbert_config = ModernBertConfig(
hidden_size=384, # A common dimension for small embedding models
num_hidden_layers=12, # Significantly fewer layers than the base's 22
num_attention_heads=6, # Must be a divisor of hidden_size
intermediate_size=1536, # 4 * hidden_size -- VERY WIDE!!
max_position_embeddings=1024, # Max sequence length for the model; originally 8192
)
model = ModernBertModel(modernbert_small_config)
Model Description
- Model Type: Sentence Transformer
- Base model: Custom-trained ModernBERT-Small (trained from scratch)
- Architecture: ModernBERT-Small
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: MIT
Model Sources
- Repository: ModernBERT Training Scripts
- Documentation: Sentence Transformers Documentation
- Hugging Face: Sentence Transformers on Hugging Face
Training Procedure
This model was developed using a sophisticated, multi-stage "curriculum learning" approach to build a deep semantic understanding. The training scripts are available in the linked repository.
Stage 1: Foundational Contrastive Training
The model was first trained on a large, diverse collection of over 1 million triplets from three different datasets. This stage taught the model a broad, foundational understanding of language, relevance, and logical relationships.
- Datasets:
- Loss Function:
MultipleNegativesRankingLoss
Stage 2: Advanced Knowledge Distillation
The foundational model was then refined by having it mimic a state-of-the-art teacher model (BAAI/bge-base-en-v1.5). This stage transferred the nuanced knowledge of the expert teacher to our more efficient student model.
- Teacher Model:
BAAI/bge-base-en-v1.5 - Loss Function:
DistillKLDivLoss
Stage 3: Task-Specific Fine-Tuning
As a final "calibration" step, the best distilled model was fine-tuned directly on the Semantic Textual Similarity (STS) benchmark. This specializes the model for tasks requiring precise similarity scores.
- Dataset: sentence-transformers/stsb
- Loss Function:
CosineSimilarityLoss
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("johnnyboycurtis/ModernBERT-small")
# Run inference
sentences = [
'A girl is eating a cupcake.',
'A woman is eating a cupcake.',
'Zebras are socializing.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8201, 0.1449],
# [0.8201, 1.0000, 0.1839],
# [0.1449, 0.1839, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.7575 | 0.6939 |
| spearman_cosine | 0.7563 | 0.6784 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.16 tokens
- max: 28 tokens
- min: 6 tokens
- mean: 10.12 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.An air plane is taking off.1.0A man is playing a large flute.A man is playing a flute.0.76A man is spreading shreded cheese on a pizza.A man is spreading shredded cheese on an uncooked pizza.0.76 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 4warmup_ratio: 0.1bf16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|
| 0.2778 | 100 | 0.1535 | - | - |
| 0.5556 | 200 | 0.068 | 0.7387 | - |
| 0.8333 | 300 | 0.0446 | - | - |
| 1.1111 | 400 | 0.0411 | 0.7511 | - |
| 1.3889 | 500 | 0.0366 | - | - |
| 1.6667 | 600 | 0.0425 | 0.7542 | - |
| 1.9444 | 700 | 0.0402 | - | - |
| 2.2222 | 800 | 0.0373 | 0.7563 | - |
| 2.5 | 900 | 0.0374 | - | - |
| 2.7778 | 1000 | 0.0384 | 0.7557 | - |
| 3.0556 | 1100 | 0.0357 | - | - |
| 3.3333 | 1200 | 0.0399 | 0.7562 | - |
| 3.6111 | 1300 | 0.0358 | - | - |
| 3.8889 | 1400 | 0.0338 | 0.7563 | - |
| -1 | -1 | - | - | 0.6784 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.13.4
- Sentence Transformers: 5.0.0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu128
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 7
Datasets used to train johnnyboycurtis/ModernBERT-small
Evaluation results
- Pearson Cosine on sts devself-reported0.758
- Spearman Cosine on sts devself-reported0.756
- Pearson Cosine on sts testself-reported0.694
- Spearman Cosine on sts testself-reported0.678