ModernRadBERT-cui-classifier
This model is a fine-tuned version of answerdotai/ModernBERT-base on the unsloth/Radiology_mini
dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1454
- Precision Micro: 0.8664
- Recall Micro: 0.7217
- F1: 0.7874
- Precision Macro: 0.6973
- Recall Macro: 0.4836
- F1 Macro: 0.5480
- Exact Match: 0.6580
- Hamming Loss: 0.0327
- Label Accuracy: 0.9673
https://www.johnpaulett.com/2025/modernbert-radiology-fine-tuning-classifier/
Model description
More information needed
Intended uses & limitations
Not intended for real-world use, was an example of MLM fine-tuning on a small radiology dataset.
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Micro | Recall Micro | F1 | Precision Macro | Recall Macro | F1 Macro | Exact Match | Hamming Loss | Label Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1371 | 1.0 | 205 | 0.1214 | 0.8169 | 0.6679 | 0.7350 | 0.4170 | 0.3481 | 0.3667 | 0.5681 | 0.0404 | 0.9596 |
0.0904 | 2.0 | 410 | 0.1054 | 0.8704 | 0.6833 | 0.7656 | 0.5391 | 0.3744 | 0.4106 | 0.6029 | 0.0351 | 0.9649 |
0.0458 | 3.0 | 615 | 0.1012 | 0.8316 | 0.7582 | 0.7932 | 0.5899 | 0.5157 | 0.5251 | 0.6580 | 0.0332 | 0.9668 |
0.0216 | 4.0 | 820 | 0.1134 | 0.8738 | 0.7044 | 0.7800 | 0.7129 | 0.4338 | 0.5071 | 0.6377 | 0.0333 | 0.9667 |
0.01 | 5.0 | 1025 | 0.1194 | 0.8382 | 0.7159 | 0.7723 | 0.6707 | 0.4817 | 0.5336 | 0.6290 | 0.0354 | 0.9646 |
0.0047 | 6.0 | 1230 | 0.1224 | 0.8721 | 0.7332 | 0.7967 | 0.6475 | 0.4692 | 0.5187 | 0.6638 | 0.0314 | 0.9686 |
0.0024 | 7.0 | 1435 | 0.1228 | 0.8540 | 0.7409 | 0.7934 | 0.7016 | 0.5071 | 0.5648 | 0.6725 | 0.0324 | 0.9676 |
0.0012 | 8.0 | 1640 | 0.1289 | 0.8744 | 0.7217 | 0.7907 | 0.7053 | 0.4852 | 0.5531 | 0.6609 | 0.0320 | 0.9680 |
0.0009 | 9.0 | 1845 | 0.1323 | 0.8765 | 0.7217 | 0.7916 | 0.7063 | 0.4831 | 0.5512 | 0.6667 | 0.0319 | 0.9681 |
0.0007 | 10.0 | 2050 | 0.1337 | 0.8765 | 0.7217 | 0.7916 | 0.7059 | 0.4809 | 0.5493 | 0.6609 | 0.0319 | 0.9681 |
0.0006 | 11.0 | 2255 | 0.1357 | 0.8744 | 0.7217 | 0.7907 | 0.7044 | 0.4809 | 0.5488 | 0.6609 | 0.0320 | 0.9680 |
0.0006 | 12.0 | 2460 | 0.1373 | 0.8701 | 0.7198 | 0.7878 | 0.7027 | 0.4805 | 0.5476 | 0.6638 | 0.0325 | 0.9675 |
0.0005 | 13.0 | 2665 | 0.1395 | 0.8684 | 0.7217 | 0.7883 | 0.6977 | 0.4827 | 0.5477 | 0.6638 | 0.0325 | 0.9675 |
0.0005 | 14.0 | 2870 | 0.1410 | 0.8701 | 0.7198 | 0.7878 | 0.7029 | 0.4815 | 0.5488 | 0.6580 | 0.0325 | 0.9675 |
0.0005 | 15.0 | 3075 | 0.1426 | 0.8644 | 0.7217 | 0.7866 | 0.6957 | 0.4818 | 0.5466 | 0.6551 | 0.0329 | 0.9671 |
0.0004 | 16.0 | 3280 | 0.1432 | 0.8670 | 0.7255 | 0.7900 | 0.6976 | 0.4872 | 0.5508 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 17.0 | 3485 | 0.1442 | 0.8687 | 0.7236 | 0.7895 | 0.6981 | 0.4849 | 0.5492 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 18.0 | 3690 | 0.1448 | 0.8670 | 0.7255 | 0.7900 | 0.6985 | 0.4872 | 0.5510 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 19.0 | 3895 | 0.1451 | 0.8647 | 0.7236 | 0.7879 | 0.6963 | 0.4849 | 0.5485 | 0.6580 | 0.0327 | 0.9673 |
0.0004 | 20.0 | 4100 | 0.1454 | 0.8664 | 0.7217 | 0.7874 | 0.6973 | 0.4836 | 0.5480 | 0.6580 | 0.0327 | 0.9673 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 51
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for johnpaulett/ModernRadBERT-cui-classifier
Base model
answerdotai/ModernBERT-base