PhigRange-DPO

image/png PhigRange-DPO is a DPO fine-tuned of johnsnowlabs/PhigRange-2.7B-Slerp using the mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha preference dataset. The model has been trained for for 1080 steps.

πŸ† Evaluation results

Coming Soon

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/PhigRange-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-04
  • train_batch_size: 1
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: AdamOptimizer32bit
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1080

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
13
Safetensors
Model size
2.78B params
Tensor type
FP16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train johnsnowlabs/PhigRange-DPO