|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Portuguese |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 pt |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: pt |
|
split: test |
|
args: pt |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 14.237288135593221 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Portuguese |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 pt dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3023 |
|
- Wer: 14.2373 |
|
- Cer: 5.5236 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| |
|
| 1.1113 | 0.92 | 500 | 0.3897 | 16.8721 | 6.7919 | |
|
| 0.9009 | 1.84 | 1000 | 0.3318 | 15.9322 | 6.2310 | |
|
| 0.7631 | 2.76 | 1500 | 0.3177 | 15.4854 | 5.8939 | |
|
| 0.7163 | 3.68 | 2000 | 0.3130 | 14.8998 | 5.7972 | |
|
| 0.6334 | 4.6 | 2500 | 0.3034 | 14.7920 | 5.6867 | |
|
| 0.5746 | 5.52 | 3000 | 0.3029 | 14.6225 | 5.6397 | |
|
| 0.5359 | 6.45 | 3500 | 0.3018 | 14.4838 | 5.5789 | |
|
| 0.5058 | 7.37 | 4000 | 0.3010 | 14.5917 | 5.6839 | |
|
| 0.4833 | 8.29 | 4500 | 0.3023 | 14.2373 | 5.5236 | |
|
| 0.4398 | 9.21 | 5000 | 0.3005 | 14.4222 | 5.5844 | |
|
| 0.4359 | 10.13 | 5500 | 0.2999 | 14.4838 | 5.6259 | |
|
| 0.4036 | 11.05 | 6000 | 0.2995 | 14.2835 | 5.5623 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|