librarian-bot's picture
Librarian Bot: Add base_model information to model
ee29b19
|
raw
history blame
2.33 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - ncbi_disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: dmis-lab/biobert-base-cased-v1.2
model-index:
  - name: biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: ncbi_disease
          type: ncbi_disease
          args: ncbi_disease
        metrics:
          - type: precision
            value: 0.8288508557457213
            name: Precision
          - type: recall
            value: 0.8614993646759848
            name: Recall
          - type: f1
            value: 0.8448598130841122
            name: F1
          - type: accuracy
            value: 0.9861487755016897
            name: Accuracy

biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0629
  • Precision: 0.8289
  • Recall: 0.8615
  • F1: 0.8449
  • Accuracy: 0.9861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0554 1.0 1359 0.0659 0.7814 0.8132 0.7970 0.9825
0.0297 2.0 2718 0.0445 0.8284 0.8895 0.8578 0.9876
0.0075 3.0 4077 0.0629 0.8289 0.8615 0.8449 0.9861

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.2+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1