vit_rand_rvl-cdip_N1K

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9745
  • Accuracy: 0.551
  • Brier Loss: 0.8083
  • Nll: 3.9609
  • F1 Micro: 0.551
  • F1 Macro: 0.5474
  • Ece: 0.3805
  • Aurc: 0.2338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 250 2.6207 0.171 0.9078 5.8097 0.171 0.1129 0.0606 0.7132
2.6241 2.0 500 2.4608 0.1727 0.8843 4.0297 0.1727 0.1156 0.0641 0.6991
2.6241 3.0 750 2.4182 0.2177 0.8659 4.1324 0.2177 0.1603 0.0802 0.6191
2.3655 4.0 1000 2.2066 0.2828 0.8237 3.3597 0.2828 0.2456 0.0597 0.5384
2.3655 5.0 1250 2.0873 0.3322 0.7923 3.2747 0.3322 0.2940 0.0613 0.4790
2.0557 6.0 1500 1.9178 0.398 0.7392 3.1146 0.398 0.3639 0.0589 0.3937
2.0557 7.0 1750 1.7861 0.458 0.7025 2.9045 0.458 0.4450 0.0778 0.3497
1.7262 8.0 2000 1.7288 0.4535 0.6821 2.9955 0.4535 0.4322 0.0528 0.3262
1.7262 9.0 2250 1.6881 0.472 0.6673 2.8844 0.472 0.4561 0.0563 0.3120
1.4846 10.0 2500 1.6912 0.4688 0.6633 2.8541 0.4688 0.4540 0.0718 0.3006
1.4846 11.0 2750 1.6094 0.5022 0.6353 2.8239 0.5022 0.4859 0.0759 0.2724
1.1972 12.0 3000 1.5364 0.535 0.6084 2.7911 0.535 0.5162 0.0905 0.2413
1.1972 13.0 3250 1.5683 0.521 0.6228 2.7486 0.521 0.5268 0.1003 0.2559
0.8678 14.0 3500 1.6246 0.5325 0.6246 2.8388 0.5325 0.5295 0.1304 0.2486
0.8678 15.0 3750 1.7502 0.5138 0.6555 2.9705 0.5138 0.5093 0.1750 0.2547
0.5268 16.0 4000 1.8375 0.5215 0.6677 2.9906 0.5215 0.5186 0.2099 0.2535
0.5268 17.0 4250 1.9606 0.524 0.6895 3.2415 0.524 0.5174 0.2425 0.2488
0.2667 18.0 4500 2.0553 0.5305 0.6953 3.2430 0.5305 0.5223 0.2554 0.2434
0.2667 19.0 4750 2.3400 0.5228 0.7369 3.5472 0.5228 0.5101 0.2871 0.2605
0.1513 20.0 5000 2.3720 0.5192 0.7472 3.4681 0.5192 0.5178 0.2982 0.2674
0.1513 21.0 5250 2.4935 0.52 0.7588 3.4578 0.52 0.5104 0.3101 0.2586
0.1164 22.0 5500 2.4916 0.5155 0.7625 3.3908 0.5155 0.5090 0.3129 0.2634
0.1164 23.0 5750 2.5740 0.523 0.7647 3.4298 0.523 0.5235 0.3220 0.2601
0.0883 24.0 6000 2.5887 0.5305 0.7598 3.4432 0.5305 0.5307 0.3194 0.2571
0.0883 25.0 6250 2.7429 0.52 0.7747 3.7692 0.52 0.5132 0.3291 0.2696
0.0739 26.0 6500 2.7728 0.5235 0.7828 3.4718 0.5235 0.5271 0.3399 0.2679
0.0739 27.0 6750 2.7862 0.5335 0.7680 3.5774 0.5335 0.5352 0.3256 0.2651
0.0619 28.0 7000 2.9449 0.5222 0.7964 3.6659 0.5222 0.5165 0.3503 0.2697
0.0619 29.0 7250 2.8872 0.5345 0.7714 3.5298 0.5345 0.5310 0.3376 0.2545
0.0531 30.0 7500 2.9649 0.5232 0.7994 3.6119 0.5232 0.5191 0.3527 0.2714
0.0531 31.0 7750 3.1024 0.5182 0.8112 3.6716 0.5182 0.5206 0.3639 0.2748
0.0446 32.0 8000 3.0895 0.5218 0.8036 3.6731 0.5218 0.5226 0.3609 0.2669
0.0446 33.0 8250 3.1813 0.5202 0.8130 3.6839 0.5202 0.5236 0.3675 0.2637
0.0368 34.0 8500 3.2535 0.5335 0.8011 3.6982 0.5335 0.5302 0.3653 0.2572
0.0368 35.0 8750 3.1969 0.5265 0.8021 3.7238 0.5265 0.5239 0.3649 0.2558
0.0364 36.0 9000 3.3875 0.5165 0.8174 4.0335 0.5165 0.5051 0.3675 0.2645
0.0364 37.0 9250 3.3883 0.5248 0.8168 3.8867 0.5248 0.5152 0.3768 0.2529
0.0338 38.0 9500 3.3876 0.5255 0.8198 3.6397 0.5255 0.5278 0.3791 0.2679
0.0338 39.0 9750 3.3675 0.5282 0.8201 3.7412 0.5282 0.5317 0.3774 0.2561
0.0277 40.0 10000 3.6788 0.5005 0.8597 4.1427 0.5005 0.4880 0.3966 0.2757
0.0277 41.0 10250 3.5608 0.522 0.8299 3.7769 0.522 0.5230 0.3828 0.2749
0.0177 42.0 10500 3.6388 0.5275 0.8242 4.0808 0.5275 0.5134 0.3817 0.2508
0.0177 43.0 10750 3.7068 0.532 0.8199 4.1084 0.532 0.5198 0.3809 0.2480
0.018 44.0 11000 3.7589 0.5258 0.8315 3.9264 0.5258 0.5172 0.3877 0.2624
0.018 45.0 11250 3.7492 0.518 0.8437 3.9257 0.518 0.5180 0.3951 0.2684
0.0186 46.0 11500 3.7641 0.5275 0.8306 3.9749 0.5275 0.5277 0.3877 0.2595
0.0186 47.0 11750 3.8842 0.52 0.8491 4.1807 0.52 0.5182 0.3949 0.2658
0.0159 48.0 12000 3.8731 0.5292 0.8318 3.9345 0.5292 0.5250 0.3902 0.2618
0.0159 49.0 12250 4.0101 0.519 0.8552 4.0796 0.519 0.5198 0.4025 0.2713
0.0118 50.0 12500 3.8631 0.5255 0.8288 4.0855 0.5255 0.5245 0.3891 0.2600
0.0118 51.0 12750 3.7895 0.5415 0.8143 3.9602 0.5415 0.5441 0.3809 0.2506
0.0125 52.0 13000 3.9434 0.523 0.8385 4.2268 0.523 0.5136 0.3951 0.2623
0.0125 53.0 13250 3.9239 0.5275 0.8391 4.0398 0.5275 0.5255 0.3952 0.2632
0.0087 54.0 13500 3.9463 0.5323 0.8307 4.1080 0.5323 0.5275 0.3905 0.2580
0.0087 55.0 13750 3.8462 0.5367 0.8210 3.9693 0.5367 0.5375 0.3825 0.2595
0.0093 56.0 14000 4.0603 0.5208 0.8449 4.2501 0.5208 0.5181 0.4019 0.2683
0.0093 57.0 14250 3.9614 0.5323 0.8240 4.1335 0.5323 0.5265 0.3863 0.2517
0.0082 58.0 14500 3.9553 0.548 0.8125 4.0319 0.548 0.5412 0.3822 0.2414
0.0082 59.0 14750 3.9586 0.5335 0.8325 4.0338 0.5335 0.5314 0.3902 0.2582
0.0069 60.0 15000 4.1072 0.531 0.8422 4.0678 0.531 0.5250 0.3997 0.2574
0.0069 61.0 15250 4.0455 0.5425 0.8173 4.0318 0.5425 0.5415 0.3881 0.2480
0.0054 62.0 15500 4.0208 0.531 0.8325 4.1704 0.531 0.5261 0.3912 0.2517
0.0054 63.0 15750 4.1167 0.5345 0.8325 4.2352 0.5345 0.5292 0.3926 0.2537
0.0054 64.0 16000 4.0246 0.5323 0.8339 4.0084 0.5323 0.5319 0.3940 0.2536
0.0054 65.0 16250 4.0535 0.5417 0.8203 4.1167 0.5417 0.5340 0.3875 0.2464
0.0048 66.0 16500 4.1987 0.5325 0.8371 4.2901 0.5325 0.5215 0.3979 0.2529
0.0048 67.0 16750 4.0956 0.5355 0.8264 4.3477 0.5355 0.5239 0.3889 0.2449
0.004 68.0 17000 3.9999 0.5423 0.8186 4.0645 0.5423 0.5453 0.3877 0.2487
0.004 69.0 17250 4.0824 0.538 0.8229 4.1670 0.538 0.5350 0.3887 0.2461
0.0053 70.0 17500 4.2158 0.5305 0.8479 4.2136 0.5305 0.5287 0.4002 0.2572
0.0053 71.0 17750 4.1586 0.533 0.8355 4.1576 0.533 0.5261 0.3942 0.2512
0.0041 72.0 18000 4.0781 0.5375 0.8296 4.1218 0.5375 0.5341 0.3930 0.2427
0.0041 73.0 18250 4.1389 0.5413 0.8229 4.0890 0.5413 0.5347 0.3918 0.2437
0.0028 74.0 18500 4.0675 0.5415 0.8212 4.0429 0.5415 0.5404 0.3920 0.2415
0.0028 75.0 18750 4.1044 0.5377 0.8294 4.1268 0.5377 0.5335 0.3955 0.2439
0.0027 76.0 19000 4.0731 0.5435 0.8193 4.0913 0.5435 0.5396 0.3892 0.2411
0.0027 77.0 19250 4.0768 0.5455 0.8158 4.0784 0.5455 0.5398 0.3885 0.2389
0.0028 78.0 19500 4.0665 0.5447 0.8187 4.0719 0.5447 0.5390 0.3876 0.2392
0.0028 79.0 19750 4.0475 0.5413 0.8204 4.0408 0.5413 0.5361 0.3927 0.2376
0.0026 80.0 20000 4.0176 0.5457 0.8101 4.0504 0.5457 0.5424 0.3844 0.2376
0.0026 81.0 20250 4.0408 0.5427 0.8181 4.0458 0.5427 0.5385 0.3888 0.2385
0.0027 82.0 20500 4.0392 0.5427 0.8207 4.0317 0.5427 0.5387 0.3897 0.2392
0.0027 83.0 20750 4.0163 0.545 0.8145 4.0292 0.545 0.5403 0.3868 0.2375
0.0026 84.0 21000 4.0057 0.5437 0.8165 4.0096 0.5437 0.5404 0.3867 0.2380
0.0026 85.0 21250 4.0096 0.544 0.8140 4.0733 0.544 0.5404 0.3861 0.2368
0.0026 86.0 21500 3.9696 0.5487 0.8087 4.0527 0.5487 0.5435 0.3824 0.2352
0.0026 87.0 21750 3.9826 0.5495 0.8103 4.0353 0.5495 0.5460 0.3820 0.2362
0.0025 88.0 22000 4.0171 0.5455 0.8147 4.0540 0.5455 0.5402 0.3865 0.2359
0.0025 89.0 22250 3.9745 0.5455 0.8138 3.9683 0.5455 0.5439 0.3867 0.2357
0.0025 90.0 22500 3.9811 0.5473 0.8098 3.9749 0.5473 0.5437 0.3842 0.2346
0.0025 91.0 22750 3.9800 0.5475 0.8122 3.9502 0.5475 0.5450 0.3839 0.2353
0.0025 92.0 23000 3.9844 0.5473 0.8103 3.9825 0.5473 0.5425 0.3840 0.2347
0.0025 93.0 23250 3.9876 0.5485 0.8107 3.9624 0.5485 0.5441 0.3826 0.2343
0.0025 94.0 23500 3.9751 0.5485 0.8086 3.9791 0.5485 0.5450 0.3831 0.2337
0.0025 95.0 23750 3.9765 0.548 0.8087 3.9863 0.548 0.5440 0.3839 0.2336
0.0024 96.0 24000 3.9764 0.5507 0.8077 3.9676 0.5507 0.5473 0.3807 0.2339
0.0024 97.0 24250 3.9695 0.549 0.8082 3.9494 0.549 0.5456 0.3819 0.2346
0.0023 98.0 24500 3.9733 0.5497 0.8080 3.9599 0.5497 0.5462 0.3815 0.2338
0.0023 99.0 24750 3.9727 0.5505 0.8081 3.9563 0.5505 0.5469 0.3807 0.2339
0.0023 100.0 25000 3.9745 0.551 0.8083 3.9609 0.551 0.5474 0.3805 0.2338

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.