Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
bf16: auto
dataset_prepared_path: null
datasets:
- path: joseagmz/MedQnA_version3
  type: context_qa.load_v2
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./lora_test
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

lora_test

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.6541 0.01 1 1.7634
1.2512 0.25 42 0.8978
1.1008 0.5 84 0.8307
1.0685 0.75 126 0.8026
1.1573 1.0 168 0.7850
0.9346 1.24 210 0.7729
1.0299 1.49 252 0.7612
1.0057 1.74 294 0.7544
0.976 1.99 336 0.7478
1.0765 2.22 378 0.7439
0.8845 2.47 420 0.7409
1.0198 2.73 462 0.7379
0.9712 2.98 504 0.7352
0.9069 3.21 546 0.7350
0.8973 3.46 588 0.7342
0.9359 3.71 630 0.7337

Framework versions

  • PEFT 0.8.2
  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for joseagmz/lora_test