See axolotl config
axolotl version: 0.4.0
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
bf16: auto
dataset_prepared_path: null
datasets:
- path: joseagmz/MedQnA_version3
type: context_qa.load_v2
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./lora_test
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
lora_test
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6541 | 0.01 | 1 | 1.7634 |
1.2512 | 0.25 | 42 | 0.8978 |
1.1008 | 0.5 | 84 | 0.8307 |
1.0685 | 0.75 | 126 | 0.8026 |
1.1573 | 1.0 | 168 | 0.7850 |
0.9346 | 1.24 | 210 | 0.7729 |
1.0299 | 1.49 | 252 | 0.7612 |
1.0057 | 1.74 | 294 | 0.7544 |
0.976 | 1.99 | 336 | 0.7478 |
1.0765 | 2.22 | 378 | 0.7439 |
0.8845 | 2.47 | 420 | 0.7409 |
1.0198 | 2.73 | 462 | 0.7379 |
0.9712 | 2.98 | 504 | 0.7352 |
0.9069 | 3.21 | 546 | 0.7350 |
0.8973 | 3.46 | 588 | 0.7342 |
0.9359 | 3.71 | 630 | 0.7337 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 4