See axolotl config
axolotl version: 0.5.0
base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
dataset_prepared_path:
val_set_size: 0.02
adapter: lora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/lora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
s2_attention:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
outputs/lora-out
This model is a fine-tuned version of openlm-research/open_llama_3b_v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1770
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1997 | 0.0002 | 1 | 1.3698 |
1.1468 | 0.25 | 1404 | 1.1159 |
1.2207 | 0.5 | 2808 | 1.1072 |
0.9448 | 0.75 | 4212 | 1.0982 |
1.0709 | 1.0 | 5616 | 1.0931 |
0.9592 | 1.2498 | 7020 | 1.1051 |
1.1133 | 1.4998 | 8424 | 1.1058 |
0.884 | 1.7498 | 9828 | 1.1018 |
0.9117 | 1.9998 | 11232 | 1.0963 |
0.9594 | 2.2496 | 12636 | 1.1336 |
0.9034 | 2.4996 | 14040 | 1.1338 |
0.6645 | 2.7496 | 15444 | 1.1326 |
0.8913 | 2.9996 | 16848 | 1.1309 |
0.9476 | 3.2495 | 18252 | 1.1752 |
0.9015 | 3.4995 | 19656 | 1.1762 |
0.6284 | 3.7495 | 21060 | 1.1768 |
0.7522 | 3.9995 | 22464 | 1.1770 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for josh-runpod/finetune-test-1
Base model
openlm-research/open_llama_3b_v2