metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Fig. 8. The accuracy of instruct-GPT series models of different sizes
(left to right, small to large). Larger model doing better on binary
classification of answerable and unanswerable questions in SelfAware eval.
(Image source: Yin et al. 2023)
Another way to assess the model’s awareness of unknown knowledge is to
measure the model’s output uncertainty. When a question is in-between
known and unknown, the model is expected to demonstrate the right level of
confidence.
The experiment by Kadavath et al. (2022) showed that LLMs are shown to be
well calibrated in their estimation probabilities of answer correctness on
diverse multiple choice questions in a format with visible lettered answer
options (MMLU, TruthfulQA, QuALITY, LogiQA), meaning that the predicted
probability coincides with the frequency of that answer being true. RLHF
fine-tuning makes the model poorly calibrated, but higher sampling
temperature leads to better calibration results.
sentences:
- >-
What effect does the slower acquisition of new knowledge compared to
established knowledge have on the effectiveness of large language models
in practical scenarios?
- >-
How do discrepancies identified during the final output review phase
affect the overall quality of the generated responses?
- >-
What effect does reinforcement learning from human feedback (RLHF)
fine-tuning have on how well large language models assess the accuracy
of their answers?
- source_sentence: >-
Fig. 1. Knowledge categorization of close-book QA examples based on how
likely the model outputs correct answers. (Image source: Gekhman et al.
2024)
Some interesting observations of the experiments, where dev set accuracy
is considered a proxy for hallucinations.
Unknown examples are fitted substantially slower than Known.
The best dev performance is obtained when the LLM fits the majority of the
Known training examples but only a few of the Unknown ones. The model
starts to hallucinate when it learns most of the Unknown examples.
Among Known examples, MaybeKnown cases result in better overall
performance, more essential than HighlyKnown ones.
sentences:
- >-
What is the relationship between the structural formatting of inquiries
and the occurrence of calibration errors in artificial intelligence
models, and in what ways can this understanding contribute to the
optimization of model training processes?
- >-
What are the benefits of integrating a pretrained Natural Language
Inference (NLI) model with MPNet when assessing the reliability of
reasoning paths in knowledge retrieval?
- >-
In what ways do the classifications of Known versus Unknown examples
influence the propensity of AI models to generate hallucinations during
their training processes?
- source_sentence: >-
Fig. 3. The evaluation framework for the FactualityPrompt benchmark.(Image
source: Lee, et al. 2022)
Given the model continuation and paired Wikipedia text, two evaluation
metrics for hallucination are considered:
Hallucination NE (Named Entity) errors: Using a pretrained entity
detection model and document-level grounding, this metric measures the
fraction of detected named entities that do not appear in the ground truth
document.
Entailment ratios: Using a RoBERTa model fine-tuned on MNLI and
sentence-level knowledge grounding, this metric calculates the fraction of
generated sentences that are marked as relevant to the paired Wikipedia
sentence by the entailment model.
sentences:
- >-
What impact does the implementation of a pretrained query-document
relevance model have on the process of document selection in research
methodologies?
- >-
In what ways does the sequence in which information is delivered in
AI-generated responses influence the likelihood of generating
inaccuracies or hallucinations?
- >-
In what ways does the FactualityPrompt benchmark assess the performance
of named entity detection models, particularly in relation to errors
arising from hallucinated named entities?
- source_sentence: >-
Fig. 1. Knowledge categorization of close-book QA examples based on how
likely the model outputs correct answers. (Image source: Gekhman et al.
2024)
Some interesting observations of the experiments, where dev set accuracy
is considered a proxy for hallucinations.
Unknown examples are fitted substantially slower than Known.
The best dev performance is obtained when the LLM fits the majority of the
Known training examples but only a few of the Unknown ones. The model
starts to hallucinate when it learns most of the Unknown examples.
Among Known examples, MaybeKnown cases result in better overall
performance, more essential than HighlyKnown ones.
sentences:
- >-
In what ways does the inherently adversarial structure of TruthfulQA
inquiries facilitate the detection of prevalent fallacies in human
cognitive processes, and what implications does this have for
understanding the constraints of expansive language models?
- >-
In what ways do MaybeKnown cases influence the performance of a model
when contrasted with HighlyKnown examples, particularly in relation to
the occurrence of hallucinations?
- >-
In what ways does the Self-RAG framework leverage reflection tokens to
enhance the quality of its generated outputs, and what implications does
this have for the overall generation process?
- source_sentence: >-
Fine-tuning New Knowledge#
Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a
common technique for improving certain capabilities of the model like
instruction following. Introducing new knowledge at the fine-tuning stage
is hard to avoid.
Fine-tuning usually consumes much less compute, making it debatable
whether the model can reliably learn new knowledge via small-scale
fine-tuning. Gekhman et al. 2024 studied the research question of whether
fine-tuning LLMs on new knowledge encourages hallucinations. They found
that (1) LLMs learn fine-tuning examples with new knowledge slower than
other examples with knowledge consistent with the pre-existing knowledge
of the model; (2) Once the examples with new knowledge are eventually
learned, they increase the model’s tendency to hallucinate.
sentences:
- >-
How does the IsRel token function in the retrieval process, and what
impact does it have on the relevance of generated content to reduce
hallucination?
- >-
What is the relationship between the calibration of AI models and the
effectiveness of verbalized probabilities when applied to tasks of
varying difficulty levels?
- >-
How do the results presented by Gekhman et al. in their 2024 study
inform our understanding of the reliability metrics associated with
large language models (LLMs) when subjected to fine-tuning with novel
datasets?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.828125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9635416666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.828125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3211805555555556
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.828125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9635416666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9220150687007592
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8976707175925925
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8981047453703703
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8020833333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9635416666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9895833333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8020833333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3211805555555556
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09895833333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8020833333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9635416666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9895833333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9077325270335209
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.880220734126984
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8810414411976911
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.796875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9583333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.96875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9791666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.796875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3194444444444445
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19374999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09791666666666665
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.796875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9583333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.96875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9791666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9011377823848584
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8746155753968253
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8757564484126984
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7864583333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9322916666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9635416666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9635416666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7864583333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3107638888888889
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19270833333333334
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09635416666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7864583333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9322916666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9635416666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9635416666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.888061438431803
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8623263888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8647421480429293
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8645833333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9270833333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.96875
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2881944444444445
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18541666666666665
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09687499999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8645833333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9270833333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.96875
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8335872598831777
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7895895337301586
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7917890681938919
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-100")
sentences = [
'Fine-tuning New Knowledge#\nFine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common technique for improving certain capabilities of the model like instruction following. Introducing new knowledge at the fine-tuning stage is hard to avoid.\nFine-tuning usually consumes much less compute, making it debatable whether the model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge encourages hallucinations. They found that (1) LLMs learn fine-tuning examples with new knowledge slower than other examples with knowledge consistent with the pre-existing knowledge of the model; (2) Once the examples with new knowledge are eventually learned, they increase the model’s tendency to hallucinate.',
'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
'What is the relationship between the calibration of AI models and the effectiveness of verbalized probabilities when applied to tasks of varying difficulty levels?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8281 |
cosine_accuracy@3 |
0.9635 |
cosine_accuracy@5 |
0.974 |
cosine_accuracy@10 |
0.9948 |
cosine_precision@1 |
0.8281 |
cosine_precision@3 |
0.3212 |
cosine_precision@5 |
0.1948 |
cosine_precision@10 |
0.0995 |
cosine_recall@1 |
0.8281 |
cosine_recall@3 |
0.9635 |
cosine_recall@5 |
0.974 |
cosine_recall@10 |
0.9948 |
cosine_ndcg@10 |
0.922 |
cosine_mrr@10 |
0.8977 |
cosine_map@100 |
0.8981 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8021 |
cosine_accuracy@3 |
0.9635 |
cosine_accuracy@5 |
0.974 |
cosine_accuracy@10 |
0.9896 |
cosine_precision@1 |
0.8021 |
cosine_precision@3 |
0.3212 |
cosine_precision@5 |
0.1948 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.8021 |
cosine_recall@3 |
0.9635 |
cosine_recall@5 |
0.974 |
cosine_recall@10 |
0.9896 |
cosine_ndcg@10 |
0.9077 |
cosine_mrr@10 |
0.8802 |
cosine_map@100 |
0.881 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7969 |
cosine_accuracy@3 |
0.9583 |
cosine_accuracy@5 |
0.9688 |
cosine_accuracy@10 |
0.9792 |
cosine_precision@1 |
0.7969 |
cosine_precision@3 |
0.3194 |
cosine_precision@5 |
0.1937 |
cosine_precision@10 |
0.0979 |
cosine_recall@1 |
0.7969 |
cosine_recall@3 |
0.9583 |
cosine_recall@5 |
0.9688 |
cosine_recall@10 |
0.9792 |
cosine_ndcg@10 |
0.9011 |
cosine_mrr@10 |
0.8746 |
cosine_map@100 |
0.8758 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7865 |
cosine_accuracy@3 |
0.9323 |
cosine_accuracy@5 |
0.9635 |
cosine_accuracy@10 |
0.9635 |
cosine_precision@1 |
0.7865 |
cosine_precision@3 |
0.3108 |
cosine_precision@5 |
0.1927 |
cosine_precision@10 |
0.0964 |
cosine_recall@1 |
0.7865 |
cosine_recall@3 |
0.9323 |
cosine_recall@5 |
0.9635 |
cosine_recall@10 |
0.9635 |
cosine_ndcg@10 |
0.8881 |
cosine_mrr@10 |
0.8623 |
cosine_map@100 |
0.8647 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6875 |
cosine_accuracy@3 |
0.8646 |
cosine_accuracy@5 |
0.9271 |
cosine_accuracy@10 |
0.9688 |
cosine_precision@1 |
0.6875 |
cosine_precision@3 |
0.2882 |
cosine_precision@5 |
0.1854 |
cosine_precision@10 |
0.0969 |
cosine_recall@1 |
0.6875 |
cosine_recall@3 |
0.8646 |
cosine_recall@5 |
0.9271 |
cosine_recall@10 |
0.9688 |
cosine_ndcg@10 |
0.8336 |
cosine_mrr@10 |
0.7896 |
cosine_map@100 |
0.7918 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_eval_batch_size
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.3846 |
5 |
5.0472 |
- |
- |
- |
- |
- |
0.7692 |
10 |
4.0023 |
- |
- |
- |
- |
- |
1.0 |
13 |
- |
0.7939 |
0.8135 |
0.8282 |
0.7207 |
0.8323 |
1.1538 |
15 |
2.3381 |
- |
- |
- |
- |
- |
1.5385 |
20 |
3.4302 |
- |
- |
- |
- |
- |
1.9231 |
25 |
2.08 |
- |
- |
- |
- |
- |
2.0 |
26 |
- |
0.8494 |
0.8681 |
0.8781 |
0.7959 |
0.8888 |
2.3077 |
30 |
1.4696 |
- |
- |
- |
- |
- |
2.6923 |
35 |
1.8153 |
- |
- |
- |
- |
- |
3.0 |
39 |
- |
0.8641 |
0.8844 |
0.8924 |
0.7952 |
0.8997 |
3.0769 |
40 |
1.3498 |
- |
- |
- |
- |
- |
3.4615 |
45 |
0.9135 |
- |
- |
- |
- |
- |
3.8462 |
50 |
1.3996 |
- |
- |
- |
- |
- |
4.0 |
52 |
- |
0.8647 |
0.8775 |
0.8819 |
0.7896 |
0.8990 |
4.2308 |
55 |
1.1582 |
- |
- |
- |
- |
- |
4.6154 |
60 |
1.2233 |
- |
- |
- |
- |
- |
5.0 |
65 |
0.9757 |
0.8647 |
0.8758 |
0.8810 |
0.7918 |
0.8981 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}