Fortnite Object Detection
Detection of player in fornite with AI (Yolo11)
Supported Labels
['head', 'player']
ALL my models YOLO11, YOLOv10 & YOLOv9
- Yolov9c: https://huggingface.co/jparedesDS/cs2-yolov9c
- Yolov10s: https://huggingface.co/jparedesDS/cs2-yolov10s
- Yolov10m: https://huggingface.co/jparedesDS/cs2-yolov10m
- Yolov10b: https://huggingface.co/jparedesDS/cs2-yolov10b
- Yolov10b: https://huggingface.co/jparedesDS/valorant-yolov10b
- Yolo11x: https://huggingface.co/jparedesDS/welding-defects-detection
How to use
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\fortnite-yolo11m.pt')
# Run inference on 'image.png' with arguments
model.predict(
'image.png',
save=True,
device=0
)
Confusion matrix normalized
Labels
Results
Predict
YOLO11m summary (fused): 303 layers, 20,031,574 parameters, 0 gradients, 67.7 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 12/12 [00:06<00:00, 1.90it/s]
all 1014 2097 0.933 0.739 0.828 0.668
head 223 633 0.947 0.738 0.825 0.664
player 990 1464 0.919 0.74 0.831 0.673
Others models...
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.