File size: 44,347 Bytes
6d75398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Modified forward-pass implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union, Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
    BaseModelOutputWithPast as _BaseModelOutputWithPast,
)
from transformers.modeling_outputs import (
    CausalLMOutputWithPast as _CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map

from .adapter import ParallelAdapterLayer, ProjectionMLP
from .config import ProGenConfig, ProGenConditionalConfig
from ..utils import exists

logger = logging.get_logger(__name__)

@dataclass
class BaseModelOutputWithPast(_BaseModelOutputWithPast):
    inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None


@dataclass
class CausalLMOutputWithPast(_CausalLMOutputWithPast):
    all_losses: Optional[torch.FloatTensor] = None
    inputs: Optional[Union[torch.LongTensor, torch.FloatTensor]] = None

def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq).to(x.device).float()
    )
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
    x = torch.stack((-x2, x1), axis=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


def apply_rotary_pos_emb(x, sincos, offset=0):
    sin, cos = map(
        lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(2, 3), sincos
    )
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class ProGenAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e9))

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.attn_pdrop = config.attn_pdrop
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and `num_attention_heads`: {self.num_attention_heads})."
            )
        self.scale_attn = math.sqrt(self.head_dim)
        self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = None
        if config.rotary_dim is not None:
            self.rotary_dim = config.rotary_dim

    def _split_heads(self, x, n_head, dim_head, mp_num):
        reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
        reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
        return reshaped

    def _naive_attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
    ):
        # compute causal mask from causal mask buffer
        batch_size, query_length, key_length = query.size(0), query.size(-2), key.size(-2)
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]

        attn_weights = torch.matmul(query, key.transpose(-1, -2)) / self.scale_attn
        attn_weights = torch.where(
            causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)
        )

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
        attn_weights = self.attn_dropout(attn_weights)
        attn_output = torch.matmul(attn_weights, value)

        expected_size = (batch_size, self.num_attention_heads, query_length, self.head_dim)
        if attn_output.size() != expected_size:
            raise ValueError(
                f"`attn_output` should be of size {expected_size}, but is  {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(batch_size, query_length, self.embed_dim)
        return attn_output, attn_weights

    def _sdpa_attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
    ):
        bsz, q_len = query.shape[0], query.shape[2]
        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query.device.type == "cuda" and attention_mask is not None:
            query = query.contiguous()
            key = key.contiguous()
            value = value.contiguous()

        attn_output = F.scaled_dot_product_attention(
            query,
            key,
            value,
            attn_mask=attention_mask,
            dropout_p=self.attn_pdrop if self.training else 0.0,
            # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
            is_causal=q_len > 1,
            scale=1 / self.scale_attn,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.embed_dim)
        return attn_output, None

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_past=None,
        use_cache=False,
        output_attentions=False,
    ):
        qkv = self.qkv_proj(hidden_states)
        # TODO(enijkamp): factor out number of logical TPU-v3/v4 cores or make forward pass agnostic
        # mp_num = 4
        mp_num = 8
        qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))

        local_dim = self.head_dim * self.num_attention_heads // mp_num
        query, value, key = torch.split(qkv_split, local_dim, dim=-1)
        query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)

        value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
        value = value.permute(0, 2, 1, 3)

        seq_len = key.shape[1]
        offset = 0

        if layer_past is not None:
            offset = layer_past[0].shape[-2]
            seq_len += offset

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
            k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
            q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
            sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
            key = apply_rotary_pos_emb(key, sincos, offset=offset)
            query = apply_rotary_pos_emb(query, sincos, offset=offset)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.

        input_dtype = query.dtype
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, "_pre_quantization_dtype"):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.qkv_proj.weight.dtype #this is giving an issue, but it usually isn't called

        if input_dtype != target_dtype:
            logger.warning_once(
                f"The input hidden states seems to be silently casted in {input_dtype}. "
                f"This might be because you have upcasted embedding or layer norm layers "
                f"in {input_dtype}. We will cast back the input in {target_dtype}."
            )
            query = query.to(target_dtype)
            key = key.to(target_dtype)
            value = value.to(target_dtype)

        # compute self-attention: V x Softmax(QK^T)
        if output_attentions:
            attn_output, attn_weights = self._naive_attn(query, key, value, attention_mask)
        else:
            attn_output, attn_weights = self._sdpa_attn(query, key, value, None)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class ProGenMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states):
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class ProGenBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = ProGenAttention(config)
        self.mlp = ProGenMLP(inner_dim, config)

    def forward(
        self,
        hidden_states,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        adapter_layer=None,
        adapter_dropout=None,
        adapter_input=None,
        use_cache=False,
        output_attentions=False,
    ):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states) 
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0] 
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        
        ### addition of adapter layer ###
        if exists(adapter_layer) and exists(adapter_dropout) and exists(
                adapter_input):
            
            hidden_states_update = attn_output + feed_forward_hidden_states
            adapter_out = adapter_layer(hidden_states_update, adapter_input)
            adapter_out = adapter_dropout(adapter_out)
            hidden_states_update = hidden_states_update + adapter_out

            hidden_states = hidden_states_update + residual
        else:
            hidden_states = attn_output + feed_forward_hidden_states + residual
        ### end of addition of adapter layer ###

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]
        
        return outputs 


class ProGenPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and a simple interface for downloading
    and loading pretrained models."""

    config_class = ProGenConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
    _no_split_modules = ["ProGenBlock"]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

class ModularProGenModel(ProGenPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList(
            [ProGenBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        self.rotary_dim = min(config.rotary_dim,
                              config.n_ctx // config.num_attention_heads)
        self.init_weights()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def forward_prep(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        
        if getattr(self.config, "gradient_checkpointing",
                   False) and self.training:
            #print('using gradient checkpointing')
            if use_cache:
                use_cache = False
            
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(past_length,
                                        input_shape[-1] + past_length,
                                        dtype=torch.long,
                                        device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
            assert batch_size > 0, "batch_size has to be defined and > 0"
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(
                dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        return input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict

    def forward_embed(
        self,
        input_ids=None,
        token_type_ids=None,
        inputs_embeds=None,
    ):
        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        return hidden_states

    def forward_layer(
        self,
        hidden_states,
        layer_i,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        adapter_layer=None,
        adapter_dropout=None,
        adapter_input=None,
        use_cache=None,
        output_attentions=None,
    ):
        if getattr(self.config, "gradient_checkpointing",
                   False) and self.training:
            if use_cache:
                logger.warning(
                    "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                    "`use_cache=False`...")
                use_cache = False

            def create_custom_forward(module):

                def custom_forward(*inputs):
                    # None for past_key_value
                    return module(*inputs, use_cache, output_attentions)

                return custom_forward

            outputs = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.h[layer_i]),
                hidden_states,
                None,
                attention_mask,
                head_mask[layer_i],
                adapter_layer, 
                adapter_dropout,
                adapter_input,
            )
        else:
            outputs = self.h[layer_i](
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                head_mask=head_mask[layer_i],
                adapter_layer=adapter_layer,
                adapter_dropout=adapter_dropout,
                adapter_input=adapter_input,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )

        hidden_states = outputs[0]

        if use_cache:
            presents = (outputs[1], )
        else:
            presents = None

        if output_attentions:
            self_attentions = outputs[2 if use_cache else 1]
        else:
            self_attentions = None

        return hidden_states, presents, self_attentions

    def forward_layers(
        self,
        hidden_states,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
    ):
        all_presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i in range(self.config.n_layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            hidden_states, presents, self_attentions = self.forward_layer(
                hidden_states,
                i,
                layer_past=past_key_values[i]
                if past_key_values is not None else None,
                attention_mask=attention_mask,
                head_mask=head_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )

            if use_cache is True:
                all_presents = all_presents + presents
            if output_attentions:
                all_self_attentions = all_self_attentions + (self_attentions, )

        return hidden_states, all_presents, all_self_attentions, all_hidden_states

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        input_shape = input_ids.size()
        input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.forward_prep(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = self.forward_embed(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        hidden_states, all_presents, all_self_attentions, all_hidden_states = self.forward_layers(
            hidden_states=hidden_states,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        hidden_states = self(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1), )
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(v for v in [
                hidden_states, all_presents, all_hidden_states,
                all_self_attentions
            ] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=all_presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

class ModularProGenForCausalLM(ProGenPreTrainedModel):
    _keys_to_ignore_on_load_missing = [
        r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"
    ]

    def __init__(self, config):
        super().__init__(config)

        self.transformer = ModularProGenModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
        self.init_weights()

    def get_output_embeddings(self):
        return None

    def set_output_embeddings(self, new_embeddings):
        return

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
            ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss() 
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits, ) + transformer_outputs[1:]
            return ((loss, ) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]],
                       beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the :obj:`past_key_values` cache if
        :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
        called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
        """
        return tuple(
            tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past) for layer_past in past)

    
class ProgenConditional(ProGenPreTrainedModel): #nn.Module
    def __init__(self, config: ProGenConditionalConfig):
        super().__init__(config)

        #self.model = ModularProGenForCausalLM.from_pretrained(pretrained_model_name_or_path=config.pretrained_model_dir, config=config)
        self.model = ModularProGenForCausalLM.from_pretrained("jsunn-y/ProCALM", subfolder="progen2-base", config=config, cache_dir=config.pretrained_model_dir)
        self.model.requires_grad_(False) #freeze the pretrained model by default

        self.config = config

        self.projection_mlps = torch.nn.ModuleDict() #conditioning encoders
        if config.adapter_shared_projection == True:
            n_projection_mlps = 1 #sharing a projector
        else:
            n_projection_mlps = len(self.model.transformer.h) #having a projector for every layer

        for key, input_dim in config.encoding_dimensions.items():
            adapter_projection_layers = nn.ModuleList()
            for i in range(n_projection_mlps):
                if config.adapter_projection_nlayers == None:
                    projection_mlp = torch.nn.Linear(input_dim, config.adapter_c_s)
                else:
                    projection_mlp = ProjectionMLP(input_dim=input_dim, c_s=config.adapter_c_s, num_layers=config.adapter_projection_nlayers)
                adapter_projection_layers.append(projection_mlp)

            self.projection_mlps[key] = adapter_projection_layers
        
        #if using a shared adapter, append an extra MLP to process the summed input
        #not necessary if you have a separate adapter for each layer
        #this one is always nonlinear and uses two layers
        if (config.conditions_shared_adapter == True) and (len(config.encoding_dimensions.values()) >=2):
            adapter_projection_layers = nn.ModuleList()
            for i in range(n_projection_mlps):
                projection_mlp = ProjectionMLP(input_dim=config.adapter_c_s, c_s=config.adapter_c_s, num_layers=2)
                adapter_projection_layers.append(projection_mlp)

            self.projection_mlps["combination"] = adapter_projection_layers

        #initialize the adapter layers
        self.adapter_layers = torch.nn.ModuleList()
        if config.conditions_shared_adapter == False:
            keys = config.encoding_dimensions.keys()
        else:
            keys = ["joint"]
        n_parallel = len(keys)
        
        for i in range(len(self.model.transformer.h)):
            parallel_adapter_layer = ParallelAdapterLayer(
            n_parallel=n_parallel,
            c_s=config.adapter_c_s, 
            c_h=config.n_embd,
            adapter_summation=config.adapter_summation,
            weight_init=config.adapter_weight_init,
            adapter_nlayers=config.adapter_nlayers,
            )
            adapter_dropout = torch.nn.Dropout(config.adapter_dropout)
            self.adapter_layers.append(nn.ModuleList([parallel_adapter_layer, adapter_dropout]))

    def prepare_inputs_for_generation(self, input_ids, condition_encodings: Dict[str, torch.tensor] = None, past=None, **kwargs):
        """
        Overides the prepare inputs for generation function (HF compatible) to allow for the addition of adapter input.
        """
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        past = kwargs.get("past_key_values", past)
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        
        adapter_input = {}
        for key, condition_encoding in condition_encodings.items():
            if condition_encoding is not None:
                single_adapter_input = condition_encoding.repeat(input_ids.shape[0], input_ids.shape[1], 1)
            else:
                single_adapter_input = None
            adapter_input[key] = single_adapter_input

        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
            "adapter_input": adapter_input,
        }

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        if isinstance(past_key_values, Cache):
            return past_key_values.reorder_cache(beam_idx)

        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return DynamicCache.from_legacy_cache(reordered_past)
    
    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        adapter_input=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        input_shape = input_ids.size()

        input_ids, attention_mask, head_mask, position_ids, token_type_ids, inputs_embeds, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict = self.model.transformer.forward_prep(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = self.model.transformer.forward_embed(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        all_presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        #project the condition to the dimension of the adapter
        #if sharing a single projection layer
        #else do nothing until we get into the loop
        if self.config.adapter_shared_projection == True:
            encoded_adapter_input = ()
            #if you're sharing an adapter and doing joint conditioning
            if len(adapter_input.keys()) >= 2  and self.config.conditions_shared_adapter == True:
                summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
                for key, single_adapter_input in adapter_input.items():
                    projected_adapter_input = self.projection_mlps[key][0](single_adapter_input)
                    summed_adapter_input += projected_adapter_input
                
                #combine the inputs and pass through one
                key = "combination"
                summed_adapter_input = self.projection_mlps[key][0](summed_adapter_input)
                encoded_adapter_input = (summed_adapter_input, )
            
            #if you're not sharing an adapter (with or without multiple conditions)
            else:
                for key, value in adapter_input.items():
                    summed_adapter_input = self.projection_mlps[key][0](value)
                    encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )                
            encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)

        for i in range(len(self.model.transformer.h)):
            #if not sharing a projection layer
            if self.config.adapter_shared_projection == False:
                encoded_adapter_input = ()
                #if you're sharing an adapter and doing joint conditioning
                if len(adapter_input.keys()) >= 2 and self.config.conditions_shared_adapter == True:
                    summed_adapter_input = torch.zeros(input_shape[0], input_shape[1], self.config.adapter_c_s).to(input_ids.device)
                    for key, single_adapter_input in adapter_input.items():
                        projected_adapter_input = self.projection_mlps[key][i](single_adapter_input)
                        encoded_adapter_input += projected_adapter_input
                    
                    #combine the inputs and pass through one more mlp
                    key = "combination"
                    summed_adapter_input = self.projection_mlps[key][i](summed_adapter_input)
                    encoded_adapter_input = (summed_adapter_input, )

                #if you're not sharing an adapter (with or without multiple conditions)
                else:
                    for key, value in adapter_input.items():
                        summed_adapter_input = self.projection_mlps[key][i](value)
                        encoded_adapter_input = encoded_adapter_input + (summed_adapter_input, )
                encoded_adapter_input = torch.stack(encoded_adapter_input, dim=0)

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            hidden_states, presents, self_attentions = self.model.transformer.forward_layer(
                hidden_states=hidden_states,
                layer_i=i,
                layer_past=past_key_values[i] if past_key_values[i] is not None else None,
                attention_mask=attention_mask,
                head_mask=head_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
                adapter_layer=self.adapter_layers[i][0],
                adapter_dropout=self.adapter_layers[i][1],
                adapter_input=encoded_adapter_input,
            )

            if use_cache is True:
                all_presents = all_presents + presents
            if output_attentions:
                all_self_attentions = all_self_attentions + (self_attentions, )
            
        hidden_states = self.model.transformer.ln_f(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1), )
        hidden_states = hidden_states.view(*output_shape)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(v for v in [
                hidden_states, all_presents, all_hidden_states,
                all_self_attentions
            ] if v is not None)

        transformer_outputs = BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=all_presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )
        
        hidden_states = transformer_outputs[0]

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.model.lm_head(hidden_states).to(torch.float32)

        loss = None
        all_losses = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()

            #added this so that the loss of each sample is outputted
            loss_fct = CrossEntropyLoss(ignore_index=0, reduction='none')
            all_losses = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            all_losses = all_losses.to(hidden_states.dtype)
            
            #still output the mean reduced loss
            loss_fct = CrossEntropyLoss(ignore_index=0)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits, ) + transformer_outputs[1:]
            return ((loss, ) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            all_losses=all_losses,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )