metadata
base_model: EleutherAI/pythia-160m-deduped
library_name: peft
license: apache-2.0
tags:
- axolotl
- relora
- generated_from_trainer
model-index:
- name: pythia-160m-dolphin-extended
results: []
See axolotl config
axolotl version: 0.4.1
base_model: EleutherAI/pythia-160m-deduped
load_in_8bit:
datasets:
- path: lee-ite/med-alpaca
type: alpaca
shards: 4
- path: vicgalle/alpaca-gpt4
type: alpaca
- path: iamtarun/python_code_instructions_18k_alpaca
type: alpaca
- path: llamafactory/alpaca_gpt4_en
type: alpaca
- path: cognitivecomputations/dolphin
name: flan1m-alpaca-uncensored
type: alpaca
shards: 4
dataset_prepared_path: ds-mega-alpaca
#dataset_shard_num: 10
chat_template: inst
val_set_size: 0.001
adapter: lora
lora_model_dir:
sequence_len: 2048
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- query_key_value
lora_target_linear:
lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
lora_modules_to_save:
- embed_in
- embed_out
- lm_head
lora_on_cpu: false
# ReLoRA configuration
# # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
# relora_steps: # Number of steps per ReLoRA restart
# relora_warmup_steps: # Number of per-restart warmup steps
# relora_anneal_steps: # Number of anneal steps for each relora cycle
# relora_prune_ratio: # threshold for optimizer magnitude when pruning
# relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
relora_steps: 200
relora_warmup_steps: 10
relora_cpu_offload: false
wandb_project: pythia
wandb_entity:
wandb_watch:
wandb_name: pythia-160m-dolphin-extended
wandb_log_model:
output_dir: ./outputs/lora-alpaca-pythia-160m-dolphin-extended
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
learning_rate: 0.0006
lr_scheduler: cosine_with_restarts
#cosine_min_lr_ratio: 0.1
train_on_inputs: false
group_by_length: false
#bf16: auto
#fp16: true
#tf32: false
float16: true
flash_attn:
xformers_attention: true
optimizer: paged_adamw_8bit
gpu_memory_limit: 8GiB
hub_model_id: jtatman/pythia-160m-dolphin-extended
early_stopping_patience: 3
#resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
auto_resume_from_checkpoints: true
local_rank:
weight_decay: 0.0
#evals_per_epoch: 4
eval_steps: 200
logging_steps: 1
save_steps: 200
save_total_limit: 5
warmup_steps: 100
tokens:
- "[INST]"
- "[/INST]"
pythia-160m-dolphin-extended
This model is a fine-tuned version of EleutherAI/pythia-160m-deduped on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.6289
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
38.0524 | 0.0000 | 1 | 33.0385 |
8.859 | 0.0056 | 200 | 8.2423 |
7.2059 | 0.0113 | 400 | 7.4385 |
10.5864 | 0.0169 | 600 | 10.5324 |
10.3914 | 0.0226 | 800 | 10.2817 |
9.5214 | 0.0282 | 1000 | 9.6289 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1