Edit model card

bpmn-information-extraction-v2

This model is a fine-tuned version of bert-base-cased on a dataset containing 104 textual process descriptions.

The dataset and the training scripts can be found here: https://github.com/jtlicardo/process-visualizer/tree/main/src/token_classification

The dataset contains 5 target labels:

  • AGENT
  • TASK
  • TASK_INFO
  • PROCESS_INFO
  • CONDITION

It achieves the following results on the evaluation set:

  • Loss: 0.2179
  • Precision: 0.8826
  • Recall: 0.9246
  • F1: 0.9031
  • Accuracy: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9945 1.0 12 1.5128 0.2534 0.3730 0.3018 0.5147
1.2161 2.0 24 0.8859 0.2977 0.4524 0.3591 0.7256
0.6755 3.0 36 0.4876 0.5562 0.7262 0.6299 0.8604
0.372 4.0 48 0.3091 0.7260 0.8413 0.7794 0.9128
0.2412 5.0 60 0.2247 0.7526 0.8571 0.8015 0.9342
0.1636 6.0 72 0.2102 0.8043 0.8968 0.8480 0.9413
0.1325 7.0 84 0.1910 0.8667 0.9286 0.8966 0.9500
0.11 8.0 96 0.2352 0.8456 0.9127 0.8779 0.9389
0.0945 9.0 108 0.2179 0.8550 0.9127 0.8829 0.9429
0.0788 10.0 120 0.2203 0.8830 0.9286 0.9052 0.9445
0.0721 11.0 132 0.2079 0.8902 0.9325 0.9109 0.9516
0.0617 12.0 144 0.2367 0.8797 0.9286 0.9035 0.9445
0.0615 13.0 156 0.2183 0.8859 0.9246 0.9049 0.9492
0.0526 14.0 168 0.2179 0.8826 0.9246 0.9031 0.9516

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.0
  • Tokenizers 0.13.2
Downloads last month
21,701
Safetensors
Model size
108M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtlicardo/bpmn-information-extraction-v2

Finetuned
(1932)
this model