metadata
base_model: BAAI/bge-small-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4012
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Extensive messenger RNA editing generates transcript and protein diversity
in genes involved in neural excitability, as previously described, as well
as in genes participating in a broad range of other cellular functions.
sentences:
- Do cephalopods use RNA editing less frequently than other species?
- GV1001 vaccine targets which enzyme?
- Which event results in the acetylation of S6K1?
- source_sentence: >-
Yes, exposure to household furry pets influences the gut microbiota of
infants.
sentences:
- Can pets affect infant microbiomed?
- What is the mode of action of Thiazovivin?
- What are the effects of CAMK4 inhibition?
- source_sentence: >-
In children with heart failure evidence of the effect of enalapril is
empirical. Enalapril was clinically safe and effective in 50% to 80% of
for children with cardiac failure secondary to congenital heart
malformations before and after cardiac surgery, impaired ventricular
function , valvar regurgitation, congestive cardiomyopathy, , arterial
hypertension, life-threatening arrhythmias coexisting with circulatory
insufficiency.
ACE inhibitors have shown a transient beneficial effect on heart failure
due to anticancer drugs and possibly a beneficial effect in muscular
dystrophy-associated cardiomyopathy, which deserves further studies.
sentences:
- Which receptors can be evaluated with the [18F]altanserin?
- >-
In what proportion of children with heart failure has Enalapril been
shown to be safe and effective?
- Which major signaling pathways are regulated by RIP1?
- source_sentence: >-
Cellular senescence-associated heterochromatic foci (SAHFS) are a novel
type of chromatin condensation involving alterations of linker histone H1
and linker DNA-binding proteins. SAHFS can be formed by a variety of cell
types, but their mechanism of action remains unclear.
sentences:
- >-
What is the relationship between the X chromosome and a neutrophil
drumstick?
- Which microRNAs are involved in exercise adaptation?
- How are SAHFS created?
- source_sentence: >-
Multicluster Pcdh diversity is required for mouse olfactory neural circuit
assembly. The vertebrate clustered protocadherin (Pcdh) cell surface
proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ,
and Pcdhγ). Although deletion of individual Pcdh clusters had subtle
phenotypic consequences, the loss of all three clusters (tricluster
deletion) led to a severe axonal arborization defect and loss of
self-avoidance.
sentences:
- >-
What are the effects of the deletion of all three Pcdh clusters
(tricluster deletion) in mice?
- what is the role of MEF-2 in cardiomyocyte differentiation?
- >-
How many periods of regulatory innovation led to the evolution of
vertebrates?
model-index:
- name: BGE small finetuned BIOASQ
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: BAAI/bge small en v1.5
type: BAAI/bge-small-en-v1.5
metrics:
- type: cosine_accuracy@1
value: 0.8373408769448374
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.925035360678925
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9476661951909476
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9618104667609618
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8373408769448374
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30834512022630833
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18953323903818953
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09618104667609619
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8373408769448374
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.925035360678925
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9476661951909476
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9618104667609618
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9048218842329923
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8860235513347253
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.886766844616012
name: Cosine Map@100
BGE small finetuned BIOASQ
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-small-bioasq-3epochs-batch32")
# Run inference
sentences = [
'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
BAAI/bge-small-en-v1.5
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8373 |
cosine_accuracy@3 | 0.925 |
cosine_accuracy@5 | 0.9477 |
cosine_accuracy@10 | 0.9618 |
cosine_precision@1 | 0.8373 |
cosine_precision@3 | 0.3083 |
cosine_precision@5 | 0.1895 |
cosine_precision@10 | 0.0962 |
cosine_recall@1 | 0.8373 |
cosine_recall@3 | 0.925 |
cosine_recall@5 | 0.9477 |
cosine_recall@10 | 0.9618 |
cosine_ndcg@10 | 0.9048 |
cosine_mrr@10 | 0.886 |
cosine_map@100 | 0.8868 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,012 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 3 tokens
- mean: 63.38 tokens
- max: 485 tokens
- min: 5 tokens
- mean: 16.13 tokens
- max: 49 tokens
- Samples:
positive anchor Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.
What is the implication of histone lysine methylation in medulloblastoma?
STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.
What is the role of STAG1/STAG2 proteins in differentiation?
The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.
What is the association between cell phone use and glioblastoma?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | BAAI/bge-small-en-v1.5_cosine_map@100 |
---|---|---|---|
0.0794 | 10 | 0.5344 | - |
0.1587 | 20 | 0.4615 | - |
0.2381 | 30 | 0.301 | - |
0.3175 | 40 | 0.2169 | - |
0.3968 | 50 | 0.1053 | - |
0.4762 | 60 | 0.1432 | - |
0.5556 | 70 | 0.1589 | - |
0.6349 | 80 | 0.1458 | - |
0.7143 | 90 | 0.1692 | - |
0.7937 | 100 | 0.1664 | - |
0.8730 | 110 | 0.1252 | - |
0.9524 | 120 | 0.1243 | - |
1.0 | 126 | - | 0.8858 |
0.0794 | 10 | 0.1393 | - |
0.1587 | 20 | 0.1504 | - |
0.2381 | 30 | 0.1009 | - |
0.3175 | 40 | 0.0689 | - |
0.3968 | 50 | 0.0301 | - |
0.4762 | 60 | 0.0647 | - |
0.5556 | 70 | 0.0748 | - |
0.6349 | 80 | 0.0679 | - |
0.7143 | 90 | 0.1091 | - |
0.7937 | 100 | 0.0953 | - |
0.8730 | 110 | 0.089 | - |
0.9524 | 120 | 0.0758 | - |
1.0 | 126 | - | 0.8878 |
0.0794 | 10 | 0.092 | - |
0.1587 | 20 | 0.0748 | - |
0.2381 | 30 | 0.0392 | - |
0.3175 | 40 | 0.014 | - |
0.3968 | 50 | 0.0057 | - |
0.4762 | 60 | 0.0208 | - |
0.5556 | 70 | 0.0173 | - |
0.6349 | 80 | 0.0195 | - |
0.7143 | 90 | 0.0349 | - |
0.7937 | 100 | 0.0483 | - |
0.8730 | 110 | 0.0254 | - |
0.9524 | 120 | 0.0325 | - |
1.0 | 126 | - | 0.8883 |
1.0317 | 130 | 0.0582 | - |
1.1111 | 140 | 0.0475 | - |
1.1905 | 150 | 0.0325 | - |
1.2698 | 160 | 0.0058 | - |
1.3492 | 170 | 0.0054 | - |
1.4286 | 180 | 0.0047 | - |
1.5079 | 190 | 0.0076 | - |
1.5873 | 200 | 0.0091 | - |
1.6667 | 210 | 0.0232 | - |
1.7460 | 220 | 0.0147 | - |
1.8254 | 230 | 0.0194 | - |
1.9048 | 240 | 0.0186 | - |
1.9841 | 250 | 0.0141 | - |
2.0 | 252 | - | 0.8857 |
2.0635 | 260 | 0.037 | - |
2.1429 | 270 | 0.0401 | - |
2.2222 | 280 | 0.0222 | - |
2.3016 | 290 | 0.0134 | - |
2.3810 | 300 | 0.008 | - |
2.4603 | 310 | 0.0199 | - |
2.5397 | 320 | 0.017 | - |
2.6190 | 330 | 0.0164 | - |
2.6984 | 340 | 0.0344 | - |
2.7778 | 350 | 0.0352 | - |
2.8571 | 360 | 0.0346 | - |
2.9365 | 370 | 0.0256 | - |
3.0 | 378 | - | 0.8868 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}