|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: m3rg-iitd/matscibert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: MatSciBERT_ST_DA_100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MatSciBERT_ST_DA_100 |
|
|
|
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2043 |
|
- Precision: 0.9627 |
|
- Recall: 0.9693 |
|
- F1: 0.9660 |
|
- Accuracy: 0.9561 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 59 | 0.2685 | 0.9263 | 0.9420 | 0.9341 | 0.9213 | |
|
| No log | 2.0 | 118 | 0.1935 | 0.9477 | 0.9573 | 0.9524 | 0.9429 | |
|
| No log | 3.0 | 177 | 0.2043 | 0.9558 | 0.9669 | 0.9613 | 0.9506 | |
|
| No log | 4.0 | 236 | 0.1769 | 0.9596 | 0.9701 | 0.9648 | 0.9554 | |
|
| No log | 5.0 | 295 | 0.1789 | 0.9619 | 0.9686 | 0.9652 | 0.9561 | |
|
| No log | 6.0 | 354 | 0.1916 | 0.9620 | 0.9683 | 0.9651 | 0.9557 | |
|
| No log | 7.0 | 413 | 0.1955 | 0.9623 | 0.9685 | 0.9654 | 0.9559 | |
|
| No log | 8.0 | 472 | 0.2002 | 0.9627 | 0.9713 | 0.9670 | 0.9575 | |
|
| 0.1044 | 9.0 | 531 | 0.2033 | 0.9632 | 0.9698 | 0.9665 | 0.9566 | |
|
| 0.1044 | 10.0 | 590 | 0.2043 | 0.9627 | 0.9693 | 0.9660 | 0.9561 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|