SciBERT_BIOMAT_NER3
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4732
- Precision: 0.4656
- Recall: 0.7280
- F1: 0.5679
- Accuracy: 0.9419
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 422 | 0.2439 | 0.4539 | 0.7049 | 0.5522 | 0.9411 |
0.1714 | 2.0 | 844 | 0.2813 | 0.4637 | 0.7322 | 0.5678 | 0.9425 |
0.0492 | 3.0 | 1266 | 0.3348 | 0.4562 | 0.7024 | 0.5531 | 0.9416 |
0.023 | 4.0 | 1688 | 0.3503 | 0.4670 | 0.7301 | 0.5696 | 0.9415 |
0.0127 | 5.0 | 2110 | 0.3911 | 0.4788 | 0.7487 | 0.5840 | 0.9430 |
0.0066 | 6.0 | 2532 | 0.4087 | 0.4745 | 0.7334 | 0.5762 | 0.9429 |
0.0066 | 7.0 | 2954 | 0.4228 | 0.4708 | 0.7359 | 0.5742 | 0.9421 |
0.0038 | 8.0 | 3376 | 0.4359 | 0.4657 | 0.7239 | 0.5668 | 0.9422 |
0.0024 | 9.0 | 3798 | 0.4624 | 0.4641 | 0.7251 | 0.5660 | 0.9419 |
0.0015 | 10.0 | 4220 | 0.4732 | 0.4656 | 0.7280 | 0.5679 | 0.9419 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for judithrosell/SciBERT_BIOMAT_NER3
Base model
allenai/scibert_scivocab_uncased