SciBERT_JNLPBA_NER / README.md
judithrosell's picture
End of training
3c9aa17
metadata
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: SciBERT_JNLPBA_NER
    results: []

SciBERT_JNLPBA_NER

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1456
  • Precision: 0.8042
  • Recall: 0.8228
  • F1: 0.8134
  • Accuracy: 0.9512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.234 1.0 582 0.1536 0.7820 0.7944 0.7882 0.9469
0.1398 2.0 1164 0.1489 0.7962 0.8033 0.7997 0.9495
0.1212 3.0 1746 0.1456 0.8042 0.8228 0.8134 0.9512

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0