VF_BERT_ST_1800_V2 / README.md
judithrosell's picture
End of training
2227c48 verified
|
raw
history blame
2.42 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: VF_BERT_ST_1800_V2
    results: []

VF_BERT_ST_1800_V2

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1698
  • Precision: 0.9686
  • Recall: 0.9772
  • F1: 0.9729
  • Accuracy: 0.9683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2128 1.0 569 0.1128 0.9644 0.9733 0.9688 0.9654
0.0784 2.0 1138 0.1145 0.9668 0.9753 0.9710 0.9672
0.0512 3.0 1707 0.1242 0.9680 0.9746 0.9712 0.9663
0.0327 4.0 2276 0.1227 0.9706 0.9762 0.9734 0.9673
0.022 5.0 2845 0.1298 0.9684 0.9755 0.9719 0.9686
0.0153 6.0 3414 0.1410 0.9710 0.9778 0.9744 0.9698
0.0118 7.0 3983 0.1589 0.9681 0.9777 0.9729 0.9686
0.0058 8.0 4552 0.1617 0.9696 0.9773 0.9735 0.9691
0.005 9.0 5121 0.1731 0.9685 0.9773 0.9729 0.9683
0.0043 10.0 5690 0.1698 0.9686 0.9772 0.9729 0.9683

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1