|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
datasets: |
|
- amazon_us_reviews |
|
model-index: |
|
- name: distilbert-amazon-shoe-reviews |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
type: amazon_us_reviews |
|
name: Amazon US reviews |
|
split: Shoes |
|
metrics: |
|
- type: accuracy |
|
value: 0.6819221967963387 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-amazon-shoe-reviews |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9536 |
|
- Accuracy: 0.5767 |
|
- F1: [0.62380713 0.45806452 0.5077951 0.56106774 0.73541247] |
|
- Precision: [0.62537764 0.45920398 0.49326923 0.58508403 0.72376238] |
|
- Recall: [0.62224449 0.45693069 0.52320245 0.53894533 0.74744376] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:| |
|
| 0.9704 | 1.0 | 2813 | 0.9536 | 0.5767 | [0.62380713 0.45806452 0.5077951 0.56106774 0.73541247] | [0.62537764 0.45920398 0.49326923 0.58508403 0.72376238] | [0.62224449 0.45693069 0.52320245 0.53894533 0.74744376] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|