license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- f1 | |
- precision | |
- recall | |
model-index: | |
- name: distilbert-amazon-shoe-reviews | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# distilbert-amazon-shoe-reviews | |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.9532 | |
- Accuracy: 0.5779 | |
- F1: [0.62616119 0.46456105 0.50993865 0.55755123 0.734375 ] | |
- Precision: [0.62757927 0.46676662 0.49148534 0.58430541 0.72415507] | |
- Recall: [0.6247495 0.46237624 0.52983172 0.53313982 0.74488753] | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 1 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:| | |
| 0.9713 | 1.0 | 2813 | 0.9532 | 0.5779 | [0.62616119 0.46456105 0.50993865 0.55755123 0.734375 ] | [0.62757927 0.46676662 0.49148534 0.58430541 0.72415507] | [0.6247495 0.46237624 0.52983172 0.53313982 0.74488753] | | |
### Framework versions | |
- Transformers 4.20.1 | |
- Pytorch 1.12.0+cu102 | |
- Datasets 2.3.2 | |
- Tokenizers 0.12.1 | |