license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- f1 | |
- precision | |
- recall | |
model-index: | |
- name: distilbert-amazon-shoe-reviews | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# distilbert-amazon-shoe-reviews | |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.9546 | |
- Accuracy: 0.5788 | |
- F1: [0.62939855 0.4656164 0.50839092 0.5594581 0.73356926] | |
- Precision: [0.62705122 0.47043962 0.49258728 0.58103179 0.7255 ] | |
- Recall: [0.63176353 0.46089109 0.52524222 0.53942912 0.74182004] | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 1 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:| | |
| 0.9611 | 1.0 | 2813 | 0.9546 | 0.5788 | [0.62939855 0.4656164 0.50839092 0.5594581 0.73356926] | [0.62705122 0.47043962 0.49258728 0.58103179 0.7255 ] | [0.63176353 0.46089109 0.52524222 0.53942912 0.74182004] | | |
### Framework versions | |
- Transformers 4.28.1 | |
- Pytorch 2.0.0+cu117 | |
- Datasets 2.12.0 | |
- Tokenizers 0.13.3 | |