jungealexander's picture
update model card README.md
997c801
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - go_emotions
metrics:
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-go_emotions_20220608_1
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: go_emotions
          type: go_emotions
          args: simplified
        metrics:
          - name: F1
            type: f1
            value: 0.5575026333429091
          - name: Accuracy
            type: accuracy
            value: 0.43641725027644673

distilbert-base-uncased-finetuned-go_emotions_20220608_1

This model is a fine-tuned version of distilbert-base-uncased on the go_emotions dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0857
  • F1: 0.5575
  • Roc Auc: 0.7242
  • Accuracy: 0.4364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.173 1.0 679 0.1074 0.4245 0.6455 0.2976
0.0989 2.0 1358 0.0903 0.5199 0.6974 0.3972
0.0865 3.0 2037 0.0868 0.5504 0.7180 0.4263
0.0806 4.0 2716 0.0860 0.5472 0.7160 0.4233
0.0771 5.0 3395 0.0857 0.5575 0.7242 0.4364

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1