Edit model card

https://github.com/JunnYu/ChineseBert_pytorch

ChineseBert_pytorch

本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。

pretrained_tokenizer_name = "junnyu/ChineseBERT-base"
tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_tokenizer_name)

Paper

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li

Install

pip install chinesebert
or
pip install git+https://github.com/JunnYu/ChineseBert_pytorch.git

Usage

import torch
from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig

pretrained_model_name = "junnyu/ChineseBERT-base"

tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_model_name)
chinese_bert = ChineseBertForMaskedLM.from_pretrained(pretrained_model_name)

text = "北京是[MASK]国的首都。"
inputs = tokenizer(text, return_tensors="pt")
print(inputs)
maskpos = 4

with torch.no_grad():
    o = chinese_bert(**inputs)
    value, index = o.logits.softmax(-1)[0, maskpos].topk(10)

pred_tokens = tokenizer.convert_ids_to_tokens(index.tolist())
pred_values = value.tolist()

outputs = []
for t, p in zip(pred_tokens, pred_values):
    outputs.append(f"{t}|{round(p,4)}")
print(outputs)

# base  ['中|0.711', '我|0.2488', '祖|0.016', '法|0.0057', '美|0.0048', '全|0.0042', '韩|0.0015', '英|0.0011', '两|0.0008', '王|0.0006']
# large ['中|0.8341', '我|0.1479', '祖|0.0157', '全|0.0007', '国|0.0005', '帝|0.0001', '该|0.0001', '法|0.0001', '一|0.0001', '咱|0.0001']

Reference

https://github.com/ShannonAI/ChineseBert

Downloads last month
21
Inference Examples
Inference API (serverless) has been turned off for this model.