You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Anime Classifier just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050

Model Details

  • Model Type: Image Classification
  • Model Stats:
    • Params: 963.1K
    • FLOPs / MACs: 380.8M / 185.3M
    • Image size: train = 384 x 384, test = 384 x 384
  • Dataset: animetimm/danbooru-wdtagger-v4-w640-ws-full
    • Classes: r0, r90, r180, r270

Results

Metrics

# Acc / Top-2 Macro (F1/P/R/AUC) Micro (F1/P/R/AUC)
Validation 97.86% / 99.54% 0.979 / 0.979 / 0.979 / 0.999 0.979 / 0.979 / 0.979 / 0.999
Test 97.86% / 99.57% 0.979 / 0.979 / 0.979 / 0.999 0.979 / 0.979 / 0.979 / 0.999

Plots

# Confusion P/R F1
Validation
Test

How to Use

We provided a sample image for our code samples, you can find it here.

Use Transformers And Torch

Install dghs-imgutils, timm and other necessary requirements with the following command

pip install 'dghs-imgutils>=0.19.0' torch huggingface_hub timm pillow 'transformers>=4.57.1'

After that you can load this model with timm library, and use it for train, validation and test, with the following code

import torch
from imgutils.data import load_image
from transformers import AutoImageProcessor, AutoModel

processor = AutoImageProcessor.from_pretrained('just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050', trust_remote_code=True)
model = AutoModel.from_pretrained('just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050', trust_remote_code=True, use_infer_head=True)
model.eval()

image = load_image('https://huggingface.co/just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050/resolve/main/sample.webp', mode='RGB', force_background='white')
input_ = processor(image)['pixel_values']
# input_, shape: torch.Size([1, 3, 384, 384]), dtype: torch.float32
classes = model.config.classes
# ['r0', 'r90', 'r180', 'r270']

with torch.no_grad():
    output = model(input_)
# output, shape: torch.Size([1, 4]), dtype: torch.float32

print(dict(zip(classes, output[0].tolist())))
# {'r0': 0.0009245745022781193,
#  'r90': 0.001419938518665731,
#  'r180': 0.95500648021698,
#  'r270': 0.04264896735548973}

Citation

@misc{cls_dbv4_full_rotate_mobilenetv4_conv_small_050,
  title        = {Anime Classifier just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050},
  author       = {narugo1992 and Deep Generative anime Hobbyist Syndicate (DeepGHS)},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050}},
  note         = {A anime-style image classification model for classification task with 4 classes (r0, r90, r180, r270), trained on anime dataset dbv4-full (\url{https://huggingface.co/datasets/animetimm/danbooru-wdtagger-v4-w640-ws-full}). Model parameters: 963.1K, FLOPs: 380.8M, input resolution: 384×384.},
  license      = {mit}
}
Downloads last month
-
Safetensors
Model size
977k params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050

Dataset used to train just-a-try/cls-dbv4-full.rotate.mobilenetv4_conv_small_050