full-review-clf / README.md
justina's picture
Update README.md
90dbd50
|
raw
history blame
2.27 kB
---
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: full-review-clf
results: []
datasets:
- justina/yelp_boba_reviews
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# full-review-clf
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on
[justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8198
- F1 Macro: 0.6358
- Aucpr Macro: 0.6658
- Accuracy: 0.7185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|
| 0.723 | 0.43 | 500 | 0.7576 | 0.5979 | 0.6652 | 0.6831 |
| 0.7307 | 0.87 | 1000 | 0.6862 | 0.6368 | 0.6752 | 0.7185 |
| 0.5828 | 1.3 | 1500 | 0.7398 | 0.6439 | 0.6661 | 0.7255 |
| 0.6236 | 1.73 | 2000 | 0.7878 | 0.6212 | 0.6690 | 0.7069 |
| 0.3739 | 2.16 | 2500 | 0.8138 | 0.6447 | 0.6752 | 0.7170 |
| 0.4235 | 2.6 | 3000 | 0.8048 | 0.6490 | 0.6673 | 0.7255 |
| 0.3684 | 3.03 | 3500 | 0.9615 | 0.6483 | 0.6715 | 0.7205 |
| 0.3243 | 3.46 | 4000 | 1.0931 | 0.6432 | 0.6632 | 0.7235 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3