|
--- |
|
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: full-review-clf |
|
results: [] |
|
datasets: |
|
- justina/yelp_boba_reviews |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# full-review-clf |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on |
|
[justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8198 |
|
- F1 Macro: 0.6358 |
|
- Aucpr Macro: 0.6658 |
|
- Accuracy: 0.7185 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:| |
|
| 0.723 | 0.43 | 500 | 0.7576 | 0.5979 | 0.6652 | 0.6831 | |
|
| 0.7307 | 0.87 | 1000 | 0.6862 | 0.6368 | 0.6752 | 0.7185 | |
|
| 0.5828 | 1.3 | 1500 | 0.7398 | 0.6439 | 0.6661 | 0.7255 | |
|
| 0.6236 | 1.73 | 2000 | 0.7878 | 0.6212 | 0.6690 | 0.7069 | |
|
| 0.3739 | 2.16 | 2500 | 0.8138 | 0.6447 | 0.6752 | 0.7170 | |
|
| 0.4235 | 2.6 | 3000 | 0.8048 | 0.6490 | 0.6673 | 0.7255 | |
|
| 0.3684 | 3.03 | 3500 | 0.9615 | 0.6483 | 0.6715 | 0.7205 | |
|
| 0.3243 | 3.46 | 4000 | 1.0931 | 0.6432 | 0.6632 | 0.7235 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |