See axolotl config
axolotl version: 0.4.0
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: false
# trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: WhiteRabbitNeo/WRN-Chapter-1
type:
system_prompt: ""
field_system: system
field_instruction: instruction
field_output: response
prompt_style: chatml
- path: WhiteRabbitNeo/WRN-Chapter-2
type:
system_prompt: ""
field_system: system
field_instruction: instruction
field_output: response
prompt_style: chatml
dataset_prepared_path: ./phi2-bunny/last-run-prepared
val_set_size: 0.05
output_dir: ./phi2-bunny/
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
hub_model_id: justinj92/phi2-bunny
wandb_project: phi2-bunny
wandb_entity: justinjoy-5
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 5
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 0.00001
max_grad_norm: 1000.0
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
chat_template: chatml
warmup_steps: 100
evals_per_epoch: 4
save_steps: 0.01
save_total_limit: 2
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
tokens:
- "<|im_start|>"
Hardware
Azure 1xNC_H100 VM - 8 Hours Training Time
phi2-bunny
This model is a fine-tuned version of microsoft/phi-2 on the WhiteRabbit Cybersecurity dataset. It achieves the following results on the evaluation set:
- Loss: 0.5347
Model description
Phi-2 SLM
Intended uses & limitations
Research & Learning
ChatML Prompt
<|im_start|>system You are Bunny, a helpful AI cyber researcher. Answer the Question in a logical, step-by-step manner that makes the reasoning process clear. Carefully analyze the question to identify the core issue or problem to be solved.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8645 | 0.0 | 1 | 0.7932 |
0.6246 | 0.25 | 228 | 0.6771 |
0.6449 | 0.5 | 456 | 0.6186 |
0.6658 | 0.75 | 684 | 0.6073 |
0.5419 | 1.0 | 912 | 0.5911 |
0.5477 | 1.24 | 1140 | 0.5878 |
0.612 | 1.49 | 1368 | 0.5715 |
0.6328 | 1.74 | 1596 | 0.5632 |
0.5082 | 1.99 | 1824 | 0.5534 |
0.5807 | 2.24 | 2052 | 0.5513 |
0.4775 | 2.49 | 2280 | 0.5448 |
0.514 | 2.74 | 2508 | 0.5430 |
0.4943 | 2.99 | 2736 | 0.5398 |
0.5012 | 3.22 | 2964 | 0.5396 |
0.5203 | 3.48 | 3192 | 0.5371 |
0.5112 | 3.73 | 3420 | 0.5356 |
0.4978 | 3.98 | 3648 | 0.5351 |
0.5642 | 4.22 | 3876 | 0.5348 |
0.5383 | 4.47 | 4104 | 0.5348 |
0.4679 | 4.72 | 4332 | 0.5347 |
Framework versions
- PEFT 0.8.1.dev0
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 38
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for justinj92/phi2-bunny
Base model
microsoft/phi-2