b2b_paraphrase_retrain
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.0760
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7654 | 5.0 | 5 | 10.5282 |
0.612 | 10.0 | 10 | 7.3206 |
0.4323 | 15.0 | 15 | 6.1823 |
0.3377 | 20.0 | 20 | 4.8119 |
0.2952 | 25.0 | 25 | 4.4300 |
0.2734 | 30.0 | 30 | 4.2043 |
0.2613 | 35.0 | 35 | 4.0847 |
0.2537 | 40.0 | 40 | 3.9372 |
0.248 | 45.0 | 45 | 3.8550 |
0.2429 | 50.0 | 50 | 3.7778 |
0.2392 | 55.0 | 55 | 3.7219 |
0.2352 | 60.0 | 60 | 3.6906 |
0.2316 | 65.0 | 65 | 3.6539 |
0.2275 | 70.0 | 70 | 3.5842 |
0.2242 | 75.0 | 75 | 3.5152 |
0.2197 | 80.0 | 80 | 3.4511 |
0.2155 | 85.0 | 85 | 3.3881 |
0.211 | 90.0 | 90 | 3.3397 |
0.2061 | 95.0 | 95 | 3.2789 |
0.2013 | 100.0 | 100 | 3.2271 |
0.1967 | 105.0 | 105 | 3.1762 |
0.1915 | 110.0 | 110 | 3.1301 |
0.1868 | 115.0 | 115 | 3.1049 |
0.1829 | 120.0 | 120 | 3.0994 |
0.1784 | 125.0 | 125 | 3.0864 |
0.1743 | 130.0 | 130 | 3.0954 |
0.1709 | 135.0 | 135 | 3.0665 |
0.1683 | 140.0 | 140 | 3.0645 |
0.1637 | 145.0 | 145 | 3.0568 |
0.1614 | 150.0 | 150 | 3.0681 |
0.1573 | 155.0 | 155 | 3.0760 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.