metadata
license: cc-by-nc-sa-4.0
RetCCL-based ABMIL models for metastasis detection
These are weakly-supervised, attention-based multiple instance learning models for binary metastasis detection (normal versus metastasis). The models were trained on the CAMELYON16 dataset using RetCCL embeddings.
Data
- Training set consisted of 243 whole slide images (WSIs).
- 143 negative
- 100 positive
- 52 macrometastases
- 48 micrometastases
- Validation set consisted of 27 WSIs.
- 16 negative
- 11 positive
- 6 macrometastases
- 5 micrometastases
- Test set consisted of 129 WSIs.
- 80 negative
- 49 positive
- 22 macrometastases
- 27 micrometastases
Evaluation
Below are the classification results on the test set.
Seed | Sensitivity | Specificity | BA | Precision | F1 |
---|---|---|---|---|---|
0 | 0.612 | 0.838 | 0.725 | 0.698 | 0.652 |
1 | 0.531 | 0.950 | 0.740 | 0.867 | 0.658 |
2 | 0.551 | 0.950 | 0.751 | 0.871 | 0.675 |
3 | 0.612 | 0.925 | 0.769 | 0.833 | 0.706 |
4 | 0.531 | 0.950 | 0.740 | 0.867 | 0.658 |
How to reuse the model
The model expects 128 x 128 micrometer patches, embedded with the RetCCL model.
import torch
from abmil import AttentionMILModel
model = AttentionMILModel(in_features=2048, L=512, D=384, num_classes=2, gated_attention=True)
model.eval()
state_dict = torch.load("seed3/model_best.pt", map_location="cpu", weights_only=True)
model.load_state_dict(state_dict)
# Load a bag of features
bag = torch.ones(1000, 2048)
with torch.inference_mode():
logits, attention = model(bag)