|
--- |
|
license: apache-2.0 |
|
tags: |
|
- object-detection |
|
- computer-vision |
|
- yolox |
|
- yolov3 |
|
- yolov5 |
|
datasets: |
|
- detection-datasets/coco |
|
--- |
|
|
|
### Model Description |
|
[YOLOX](https://arxiv.org/abs/2107.08430) is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. |
|
|
|
[YOLOXDetect-Pip](https://github.com/kadirnar/yolox-pip/): This repo is a packaged version of the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) for easy installation and use. |
|
|
|
[Paper Repo]: Implementation of paper - [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) |
|
|
|
### Installation |
|
``` |
|
pip install yoloxdetect |
|
``` |
|
|
|
### Yolox Inference |
|
```python |
|
from yoloxdetect import YoloxDetector |
|
from yolox.data.datasets import COCO_CLASSES |
|
model = YoloxDetector( |
|
model_path = "kadirnar/yolox_nano-v0.1.1", |
|
config_path = "configs.yolox_s", |
|
device = "cuda:0", |
|
hf_model=True |
|
) |
|
model.classes = COCO_CLASSES |
|
model.conf = 0.25 |
|
model.iou = 0.45 |
|
model.show = False |
|
model.save = True |
|
pred = model.predict(image='data/images', img_size=640) |
|
``` |
|
|
|
### BibTeX Entry and Citation Info |
|
``` |
|
@article{yolox2021, |
|
title={YOLOX: Exceeding YOLO Series in 2021}, |
|
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian}, |
|
journal={arXiv preprint arXiv:2107.08430}, |
|
year={2021} |
|
} |
|
``` |