kangaroo_7B_test01
kangaroo_7B_test01 is a merge of the following models using LazyMergekit:
- Weyaxi/MetaMath-OpenHermes-2.5-neural-chat-7b-v3-1-7B-Linear
- icefog72/IceMoonshineRP-7b
- Weyaxi/MetaMath-neural-chat-7b-v3-2-Slerp
- VAGOsolutions/SauerkrautLM-7b-HerO
- mrfakename/NeuralOrca-7B-v1
π§© Configuration
models:
- model: BioMistral/BioMistral-7B-DARE
# No parameters necessary for base model
- model: Weyaxi/MetaMath-OpenHermes-2.5-neural-chat-7b-v3-1-7B-Linear
parameters:
density: 0.5
weight: 0.2
- model: icefog72/IceMoonshineRP-7b
parameters:
density: 0.5
weight: 0.2
- model: Weyaxi/MetaMath-neural-chat-7b-v3-2-Slerp
parameters:
density: 0.5
weight: 0.2
- model: VAGOsolutions/SauerkrautLM-7b-HerO
parameters:
density: 0.5
weight: 0.2
- model: mrfakename/NeuralOrca-7B-v1
parameters:
density: 0.5
weight: 0.2
merge_method: dare_ties
base_model: BioMistral/BioMistral-7B-DARE
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "kainatq/kangaroo_7B_test01"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support