RoBERTa-minds14-en / README.md
kairaamilanii's picture
Update README.md
50a4867 verified
|
raw
history blame
1.83 kB
metadata
license: unknown
datasets:
  - PolyAI/minds14
language:
  - en
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model:
  - FacebookAI/roberta-base
pipeline_tag: text-classification
model-index:
  - name: roBERTa-minds14-en-classifier
    results:
      - task:
          type: text-classification
        dataset:
          name: minds-14
          type: en
        metrics:
          - name: Accuracy
            type: Accuracy
            value: 0.9724
      - task:
          type: text-classification
        dataset:
          name: minds-14
          type: en
        metrics:
          - name: Precision
            type: Precision
            value: 0.9736
      - task:
          type: text-classification
        dataset:
          name: minds-14
          type: en
        metrics:
          - name: Recall
            type: Recall
            value: 0.9724
      - task:
          type: text-classification
        dataset:
          name: minds-14
          type: en
        metrics:
          - name: f1
            type: f1
            value: 0.9724

this model based on roberta model that trained with minds-14 dataset, only trained in english version : enUS + enAU + enGB

the intent_classes available:

intent_classes = {
    0: 'abroad',
    1: 'address',
    2: 'app_error',
    3: 'atm_limit',
    4: 'balance',
    5: 'business_loan',
    6: 'card_issues',
    7: 'cash_deposit',
    8: 'direct_debit',
    9: 'freeze',
    10: 'high_value_payment',
    11: 'joint_account',
    12: 'latest_transactions',
    13: 'pay_bill'
}

example of using model to classify intent:

>>> from transformers import pipeline

model = "/content/RoBERTa-mind14-classifier-intent"
classifier = pipeline("text-classification", model=model)

text = "hi what's the maximum amount of money I can withdraw from" # Replace with your desired input text

prediction = classifier(text)
prediction

example output:

[{'label': 'LABEL_3', 'score': 0.9933607578277588}]