metadata
library_name: peft
license: mit
language:
- en
- vi
datasets:
- kaitchup/opus-Vietnamese-to-English
tags:
- translation
Model Card for Model ID
This is an adapter for Meta's Llama 2 7B fine-tuned for translating Vietnamese text into English.
Model Details
Model Description
- Developed by: The Kaitchup
- Model type: LoRA Adapter for Llama 2 7B
- Language(s) (NLP): Vietnamese, English
- License: MIT license
Uses
This adapter must be loaded on top of Llama 2 7B. It has been fine-tuned with QLoRA. For optimal results, the base model must be loaded with the exact same configuration used during fine-tuning. You can use the following code to load the model:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
from peft import PeftModel
base_model = "meta-llama/Llama-2-7b-hf"
compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
original_model_directory, device_map={"": 0}, quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=True)
model = PeftModel.from_pretrained(model, "kaitchup/Llama-2-7b-mt-Vietnamese-to-English")
Then, run the model as follows:
my_text = "" #put your text to translate here
prompt = my_text+" ###>"
tokenized_input = tokenizer(prompt, return_tensors="pt")
input_ids = tokenized_input["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
num_beams=10,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=130
)
for seq in generation_output.sequences:
output = tokenizer.decode(seq, skip_special_tokens=True)
print(output.split("###>")[1].strip())