File size: 14,411 Bytes
c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 08b815a c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 08b815a c18b721 8dd0f73 c18b721 8dd0f73 c18b721 8dd0f73 c18b721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
from .plot import *
from abcli import file
from abcli import path
from abcli import string
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tqdm import *
import time
import abcli.logging
import logging
logger = logging.getLogger(__name__)
class Image_Classifier(object):
def __init__(self):
self.class_names = []
self.model = None
self.params = {"convnet": False}
self.object_name = ""
self.model_size = ""
def load(self, model_path):
success, self.class_names = file.load_json(f"{model_path}/class_names.json")
if not success:
return False
success, self.params = file.load_json(f"{model_path}/params.json", default={})
if not success:
return False
self.model_size = file.size(f"{model_path}/image_classifier/model")
try:
self.model = tf.keras.models.load_model(
f"{model_path}/image_classifier/model"
)
except:
from abcli.logging import crash_report
crash_report("image_classifier.load({}) failed".format(model_path))
return False
self.window_size = int(
cache.read("{}.window_size".format(path.name(model_path)))
)
logger.info(
"{}.load({}x{}:{}): {}{} class(es): {}".format(
self.__class__.__name__,
self.window_size,
self.window_size,
path.name(model_path),
"convnet - " if self.params["convnet"] else "",
len(self.class_names),
",".join(self.class_names),
)
)
self.model.summary()
self.object_name = path.name(model_path)
return True
def predict(self, test_images, test_labels, output_path="", page_count=-1):
logger.info(
"image_classifier.predict({},{}){}".format(
string.pretty_shape_of_matrix(test_images),
string.pretty_shape_of_matrix(test_labels),
"-> {}".format(output_path) if output_path else "",
)
)
prediction_time = time.time()
predictions = self.model.predict(test_images)
prediction_time = (time.time() - prediction_time) / test_images.shape[0]
logger.info(
"image_classifier.predict(): {} / frame".format(
string.pretty_duration(prediction_time, include_ms=True)
)
)
if not output_path:
return True
if not file.save("{}/predictions.pyndarray".format(output_path), predictions):
return False
if test_labels is not None:
from sklearn.metrics import confusion_matrix
logger.info("image_classifier.predict(): rendering confusion_matrix...")
cm = confusion_matrix(
test_labels,
np.argmax(predictions, axis=1),
labels=range(len(self.class_names)),
# normalize="true",
)
cm = cm / np.sum(cm, axis=1)[:, np.newaxis]
logger.debug("confusion_matrix: {}".format(cm))
if not file.save("{}/confusion_matrix.pyndarray".format(output_path), cm):
return False
if not graphics.render_confusion_matrix(
cm,
self.class_names,
"{}/Data/0/info.jpg".format(output_path),
{
"header": [
" | ".join(host.signature()),
" | ".join(objects.signature()),
],
"footer": self.signature(prediction_time),
},
):
return False
if test_labels is not None:
logger.info(
"image_classifier.predict(): rendering test_labels distribution..."
)
# accepting the risk that if test_labels does not contain any of the largest index
# this function will return False.
distribution = np.bincount(test_labels)
distribution = distribution / np.sum(distribution)
if not graphics.render_distribution(
distribution,
self.class_names,
"{}/Data/1/info.jpg".format(output_path),
{
"header": [
" | ".join(host.signature()),
" | ".join(objects.signature()),
],
"footer": self.signature(prediction_time),
"title": "distribution of test_labels",
},
):
return False
max_index = test_images.shape[0]
if page_count != -1:
max_index = min(24 * page_count, max_index)
offset = int(np.max(np.array(objects.list_of_frames(output_path) + [-1]))) + 1
logger.info(
"image_classifier.predict(offset={}): rendering {} frame(s)...".format(
offset, max_index
)
)
for index in tqdm(range(0, max_index, 24)):
self.render(
predictions[index : index + 24],
None if test_labels is None else test_labels[index : index + 24],
test_images[index : index + 24],
"{}/Data/{}/info.jpg".format(output_path, int(index / 24) + offset),
prediction_time,
)
return True
def predict_frame(self, frame):
prediction_time = time.time()
try:
prediction = self.model.predict(
np.expand_dims(
cv2.resize(frame, (self.window_size, self.window_size)) / 255.0,
axis=0,
)
)
except:
from abcli.logging import crash_report
crash_report("image_classifier.predict_frame() crashed.")
return False, -1
prediction_time = time.time() - prediction_time
output = np.argmax(prediction)
logger.info(
"image_classifier.prediction: [{}] -> {} - took {}".format(
",".join(
[
"{}:{:.2f}".format(class_name, value)
for class_name, value in zip(self.class_names, prediction[0])
]
),
self.class_names[output],
string.pretty_duration(
prediction_time,
include_ms=True,
short=True,
),
)
)
return True, output
def render(
self,
predictions,
test_labels,
test_images,
output_filename="",
prediction_time=0,
):
num_rows = 4
num_cols = 6
num_images = num_rows * num_cols
plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
for i in range(min(num_images, len(predictions))):
plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
plot_image(i, predictions[i], test_labels, test_images, self.class_names)
plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
if output_filename:
filename_ = file.auxiliary("prediction", "png")
plt.savefig(filename_)
plt.close()
success, image = file.load_image(filename_)
if success:
image = graphics.add_signature(
image,
[" | ".join(host.signature()), " | ".join(objects.signature())],
self.signature(prediction_time),
)
file.save_image(output_filename, image)
def save(self, model_path):
model_filename = "{}/image_classifier/model".format(model_path)
file.prepare_for_saving(model_filename)
try:
self.model.save(model_filename)
logger.info("image_classifier.model -> {}".format(model_filename))
except:
from abcli.logging import crash_report
crash_report("image_classifier.save({}) failed".format(model_path))
return False
self.object_name = path.name(model_path)
self.model_size = file.size("{}/image_classifier/model".format(model_path))
if not file.save_json(
"{}/class_names.json".format(model_path), self.class_names
):
return False
if not file.save_json("{}/params.json".format(model_path), self.params):
return False
return True
def signature(self, prediction_time):
return [
" | ".join(
[
"image_classifier",
self.object_name,
string.pretty_bytes(self.model_size) if self.model_size else "",
string.pretty_size(self.input_shape),
"/".join(string.shorten(self.class_names)),
"took {} / frame".format(
string.pretty_duration(
prediction_time,
include_ms=True,
longest=True,
short=True,
)
),
]
)
]
@staticmethod
def train(data_path, model_path, color=False, convnet=True, epochs=10):
classifier = Image_Classifier()
classifier.params["convnet"] = convnet
logger.info(
"image_classifier.train({}) -{}> {}".format(
data_path,
"convnet-" if classifier.params["convnet"] else "",
model_path,
)
)
success, train_images = file.load(f"{data_path}/train_images.pyndarray")
if success:
success, train_labels = file.load(f"{data_path}/train_labels.pyndarray")
if success:
success, test_images = file.load(f"{data_path}/test_images.pyndarray")
if success:
success, test_labels = file.load(f"{data_path}/test_labels.pyndarray")
if success:
success, classifier.class_names = file.load_json(
f"{data_path}/class_names.json"
)
if not success:
return False
from tensorflow.keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
window_size = train_images.shape[1]
input_shape = (
(window_size, window_size, 3)
if color
else (window_size, window_size, 1)
if convnet
else (window_size, window_size)
)
logger.info(f"input_shape:{string.pretty_size(input_shape)}")
if convnet and not color:
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
for name, thing in zip(
"train_images,train_labels,test_images,test_labels".split(","),
[train_images, train_labels, test_images, test_labels],
):
logger.info("{}: {}".format(name, string.pretty_shape_of_matrix(thing)))
logger.info(
f"{len(classifier.class_names)} class(es): {', '.join(classifier.class_names)}"
)
train_images = train_images / 255.0
test_images = test_images / 255.0
if convnet:
# https://medium.com/swlh/convolutional-neural-networks-for-multiclass-image-classification-a-beginners-guide-to-6dbc09fabbd
classifier.model = tf.keras.Sequential(
[
tf.keras.layers.Conv2D(
filters=48,
kernel_size=3,
activation="relu",
input_shape=input_shape,
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(
filters=48, kernel_size=3, activation="relu"
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Conv2D(
filters=32, kernel_size=3, activation="relu"
),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(len(classifier.class_names)),
tf.keras.layers.Activation("softmax"),
]
)
else:
# https://github.com/gato/tensor-on-pi/blob/master/Convolutional%20Neural%20Network%20digit%20predictor.ipynb
classifier.model = tf.keras.Sequential(
[
tf.keras.layers.Flatten(input_shape=input_shape),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(len(classifier.class_names)),
tf.keras.layers.Activation("softmax"),
]
)
classifier.model.summary()
classifier.model.compile(
optimizer="adam",
loss=tf.keras.losses.categorical_crossentropy,
metrics=["accuracy"],
)
classifier.model.fit(train_images, train_labels, epochs=epochs)
test_accuracy = float(
classifier.model.evaluate(test_images, test_labels, verbose=2)[1]
)
logger.info("test accuracy: {:.4f}".format(test_accuracy))
if not file.save_json(
f"{model_path}/eval.json",
{"metrics": {"test_accuracy": test_accuracy}},
):
return False
if not classifier.save(model_path):
return False
return classifier.predict(
test_images,
np.argmax(test_labels, axis=1),
model_path,
cache=True,
page_count=10,
)
@property
def input_shape(self):
return self.model.layers[0].input_shape[1:] if self.model.layers else []
|