File size: 6,168 Bytes
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b815a
c18b721
 
 
 
 
 
 
 
 
08b815a
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b815a
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b815a
 
 
 
c18b721
 
 
08b815a
c18b721
 
 
 
08b815a
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from . import *
from abcli import file
from abcli import string
import cv2
import numpy as np
import os.path
import abcli.logging
import logging

logger = logging.getLogger(__name__)


def eval(input_path, output_path):
    from sklearn.metrics import accuracy_score

    report = {"accuracy": None}

    success, ground_truth = file.load(f"{input_path}/test_labels.pyndarray")
    if success:
        logger.info(
            "groundtruth: {} - {}".format(
                string.pretty_shape_of_matrix(ground_truth),
                ",".join([str(value) for value in ground_truth[:10]] + ["..."]),
            )
        )
        success, predictions = file.load(f"{input_path}/predictions.pyndarray")

    if success:
        predictions = np.argmax(predictions, axis=1).astype(np.uint8)
        logger.info(
            "predictions: {} - {}".format(
                string.pretty_shape_of_matrix(predictions),
                ",".join([str(value) for value in predictions[:10]] + ["..."]),
            )
        )

        report["accuracy"] = accuracy_score(predictions, ground_truth)

        logger.info(
            "image_classifier.eval({}->{}): {:.2f}%".format(
                input_path, output_path, 100 * report["accuracy"]
            )
        )

    return file.save_json(os.path.join(output_path, "evaluation_report.json"), report)


def preprocess(
    output_path,
    objects="",
    infer_annotation=True,
    purpose="predict",
    test_size=1.0 / 6,
    window_size=28,
):
    if objects:
        logger.info(
            "image_classifier.preprocess({}{})->{} - {}x{} - for {}".format(
                ",".join(objects),
                " + annotation" if infer_annotation else "",
                output_path,
                window_size,
                window_size,
                purpose,
            )
        )

        annotations = []
        list_of_images = []
        for index, object in enumerate(objects):
            list_of_images_ = [
                "{}/Data/{}/camera.jpg".format(object, frame)
                for frame in objects.list_of_frames(object)
            ]

            annotations += len(list_of_images_) * [index]
            list_of_images += list_of_images_

        annotations = np.array(annotations) if infer_annotation else []
    else:
        logger.info(
            "image_classifier.preprocess({}) - {}x{} - for {}".format(
                output_path,
                window_size,
                window_size,
                purpose,
            )
        )

        list_of_images = [
            "{}/Data/{}/camera.jpg".format(output_path, frame)
            for frame in objects.list_of_frames(output_path)
        ]

        annotations = np.array(
            file.load_json(
                f"{output_path}/annotations.json".format(),
                civilized=True,
                default=None,
            )[1]
        ).astype(np.uint8)

    if len(annotations) and len(list_of_images) != len(annotations):
        logger.error(
            f"-{name}: preprocess: mismatch between frame and annotation counts: {len(list_of_images):,g} != {len(annotations):,g}"
        )
        return False
    logger.info("{:,} frame(s)".format(len(list_of_images)))

    tensor = np.zeros(
        (len(list_of_images), window_size, window_size, 3),
        dtype=np.uint8,
    )

    error_count = 0
    for index, filename in enumerate(list_of_images):
        logger.info("+= {}".format(filename))
        success_, image = file.load_image(filename)
        if success_:
            try:
                tensor[index, :, :, :] = cv2.resize(image, (window_size, window_size))
            except:
                from abcli.logging import crash_report

                crash_report("image_classifier.preprocess() failed")
                success_ = False

        if not success_:
            error_count += 1
    logger.info(
        "tensor: {}{}".format(
            string.pretty_shape_of_matrix(tensor),
            " {} error(s)".format(error_count) if error_count else "",
        )
    )

    success = False
    if purpose == "predict":
        if not file.save("{}/test_images.pyndarray".format(output_path), tensor):
            return False
        if len(annotations):
            if not file.save(
                "{}/test_labels.pyndarray".format(output_path), annotations
            ):
                return False
        success = True
    elif purpose == "train":
        if not len(annotations):
            logger.error(f"-{name}: preprocess: annotations are not provided.")
            return False

        from sklearn.model_selection import train_test_split

        (
            tensor_train,
            tensor_test,
            annotations_train,
            annotations_test,
        ) = train_test_split(tensor, annotations, test_size=test_size)
        logger.info(
            "test-train split: {:.0f}%-{:.0f}% ".format(
                len(annotations_test) / len(annotations) * 100,
                len(annotations_train) / len(annotations) * 100,
            )
        )
        logger.info(
            "tensor_train: {}".format(string.pretty_shape_of_matrix(tensor_train))
        )
        logger.info(
            "tensor_test: {}".format(string.pretty_shape_of_matrix(tensor_test))
        )
        logger.info(
            "annotations_train: {}".format(
                string.pretty_shape_of_matrix(annotations_train)
            )
        )
        logger.info(
            "annotations_test: {}".format(
                string.pretty_shape_of_matrix(annotations_test)
            )
        )

        success = (
            file.save("{}/train_images.pyndarray".format(output_path), tensor_train)
            and file.save("{}/test_images.pyndarray".format(output_path), tensor_test)
            and file.save(
                "{}/train_labels.pyndarray".format(output_path), annotations_train
            )
            and file.save(
                "{}/test_labels.pyndarray".format(output_path), annotations_test
            )
        )
    else:
        logger.error(f"-{name}: preprocess: {purpose}: purpose not found.")

    return success