File size: 14,606 Bytes
c18b721
 
8dd0f73
c18b721
 
 
8dd0f73
 
 
c18b721
 
 
 
 
5877e39
 
c18b721
 
 
 
 
 
5877e39
 
 
 
 
 
c18b721
 
 
 
 
 
 
 
 
 
5877e39
 
 
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
5877e39
 
c18b721
 
 
 
 
 
 
 
 
 
8dd0f73
c18b721
 
08b815a
 
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0f73
 
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5877e39
 
 
 
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5877e39
c18b721
5877e39
 
 
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5877e39
 
 
 
02c423d
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0f73
 
 
c18b721
 
 
 
 
 
 
 
 
8dd0f73
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0f73
c18b721
8dd0f73
c18b721
 
02c423d
c18b721
8dd0f73
c18b721
 
 
 
 
 
 
08b815a
c18b721
8dd0f73
c18b721
 
 
 
 
8dd0f73
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0f73
c18b721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from .plot import *
from abcli import file
from abcli import path
from abcli import string
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tqdm import *
import time
import abcli.logging
import logging

logger = logging.getLogger(__name__)

default_window_size = 28


class Image_Classifier(object):
    def __init__(self):
        self.class_names = []
        self.model = None

        self.params = {
            "convnet": False,
            "object_name": "",
            "model_size": "",
            "window_size": default_window_size,
        }

    def load(self, model_path):
        success, self.class_names = file.load_json(f"{model_path}/class_names.json")
        if not success:
            return False

        success, self.params = file.load_json(f"{model_path}/params.json", default={})
        if not success:
            return False

        self.params["object_name"] = path.name(model_path)

        self.params["model_size"] = file.size(f"{model_path}/image_classifier/model")

        try:
            self.model = tf.keras.models.load_model(
                f"{model_path}/image_classifier/model"
            )
        except:
            from abcli.logging import crash_report

            crash_report("image_classifier.load({}) failed".format(model_path))
            return False

        logger.info(
            "{}.load({}x{}:{}): {}{} class(es): {}".format(
                self.__class__.__name__,
                self.params["window_size"],
                self.params["window_size"],
                path.name(model_path),
                "convnet - " if self.params["convnet"] else "",
                len(self.class_names),
                ",".join(self.class_names),
            )
        )
        self.model.summary()

        return True

    def predict(self, test_images, test_labels, output_path="", page_count=-1):
        logger.info(
            "image_classifier.predict({},{}){}".format(
                string.pretty_shape_of_matrix(test_images),
                string.pretty_shape_of_matrix(test_labels),
                "-> {}".format(output_path) if output_path else "",
            )
        )

        prediction_time = time.time()
        predictions = self.model.predict(test_images)
        prediction_time = (time.time() - prediction_time) / test_images.shape[0]
        logger.info(
            "image_classifier.predict(): {} / frame".format(
                string.pretty_duration(prediction_time, include_ms=True)
            )
        )

        if not output_path:
            return True

        if not file.save("{}/predictions.pyndarray".format(output_path), predictions):
            return False

        if test_labels is not None:
            from sklearn.metrics import confusion_matrix

            logger.info("image_classifier.predict(): rendering confusion_matrix...")

            cm = confusion_matrix(
                test_labels,
                np.argmax(predictions, axis=1),
                labels=range(len(self.class_names)),
                # normalize="true",
            )
            cm = cm / np.sum(cm, axis=1)[:, np.newaxis]
            logger.debug("confusion_matrix: {}".format(cm))

            if not file.save("{}/confusion_matrix.pyndarray".format(output_path), cm):
                return False

            if not graphics.render_confusion_matrix(
                cm,
                self.class_names,
                "{}/Data/0/info.jpg".format(output_path),
                {
                    "header": [
                        " | ".join(host.signature()),
                        " | ".join(objects.signature()),
                    ],
                    "footer": self.signature(prediction_time),
                },
            ):
                return False

        if test_labels is not None:
            logger.info(
                "image_classifier.predict(): rendering test_labels distribution..."
            )

            # accepting the risk that if test_labels does not contain any of the largest index
            # this function will return False.
            distribution = np.bincount(test_labels)
            distribution = distribution / np.sum(distribution)

            if not graphics.render_distribution(
                distribution,
                self.class_names,
                "{}/Data/1/info.jpg".format(output_path),
                {
                    "header": [
                        " | ".join(host.signature()),
                        " | ".join(objects.signature()),
                    ],
                    "footer": self.signature(prediction_time),
                    "title": "distribution of test_labels",
                },
            ):
                return False

        max_index = test_images.shape[0]
        if page_count != -1:
            max_index = min(24 * page_count, max_index)
        offset = int(np.max(np.array(objects.list_of_frames(output_path) + [-1]))) + 1
        logger.info(
            "image_classifier.predict(offset={}): rendering {} frame(s)...".format(
                offset, max_index
            )
        )
        for index in tqdm(range(0, max_index, 24)):
            self.render(
                predictions[index : index + 24],
                None if test_labels is None else test_labels[index : index + 24],
                test_images[index : index + 24],
                "{}/Data/{}/info.jpg".format(output_path, int(index / 24) + offset),
                prediction_time,
            )

        return True

    def predict_frame(self, frame):
        prediction_time = time.time()
        try:
            prediction = self.model.predict(
                np.expand_dims(
                    cv2.resize(
                        frame, (self.params["window_size"], self.params["window_size"])
                    )
                    / 255.0,
                    axis=0,
                )
            )
        except:
            from abcli.logging import crash_report

            crash_report("image_classifier.predict_frame() crashed.")
            return False, -1

        prediction_time = time.time() - prediction_time

        output = np.argmax(prediction)

        logger.info(
            "image_classifier.prediction: [{}] -> {} - took {}".format(
                ",".join(
                    [
                        "{}:{:.2f}".format(class_name, value)
                        for class_name, value in zip(self.class_names, prediction[0])
                    ]
                ),
                self.class_names[output],
                string.pretty_duration(
                    prediction_time,
                    include_ms=True,
                    short=True,
                ),
            )
        )

        return True, output

    def render(
        self,
        predictions,
        test_labels,
        test_images,
        output_filename="",
        prediction_time=0,
    ):
        num_rows = 4
        num_cols = 6
        num_images = num_rows * num_cols
        plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
        for i in range(min(num_images, len(predictions))):
            plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
            plot_image(i, predictions[i], test_labels, test_images, self.class_names)
            plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
            plot_value_array(i, predictions[i], test_labels)
            plt.tight_layout()

        if output_filename:
            filename_ = file.auxiliary("prediction", "png")
            plt.savefig(filename_)
            plt.close()

            success, image = file.load_image(filename_)
            if success:
                image = graphics.add_signature(
                    image,
                    [" | ".join(host.signature()), " | ".join(objects.signature())],
                    self.signature(prediction_time),
                )
                file.save_image(output_filename, image)

    def save(self, model_path):
        model_filename = "{}/image_classifier/model".format(model_path)
        file.prepare_for_saving(model_filename)
        try:
            self.model.save(model_filename)
            logger.info("image_classifier.model -> {}".format(model_filename))
        except:
            from abcli.logging import crash_report

            crash_report("image_classifier.save({}) failed".format(model_path))
            return False

        self.params["object_name"] = path.name(model_path)

        self.params["model_size"] = file.size(
            "{}/image_classifier/model".format(model_path)
        )

        if not file.save_json(
            "{}/class_names.json".format(model_path), self.class_names
        ):
            return False

        if not file.save_json("{}/params.json".format(model_path), self.params):
            return False

        return True

    def signature(self, prediction_time):
        return [
            " | ".join(
                [
                    "image_classifier",
                    self.params["object_name"],
                    string.pretty_bytes(self.params["model_size"])
                    if self.params["model_size"]
                    else "",
                    string.pretty_shape(self.input_shape),
                    "/".join(string.shorten(self.class_names)),
                    "took {} / frame".format(
                        string.pretty_duration(
                            prediction_time,
                            include_ms=True,
                            longest=True,
                            short=True,
                        )
                    ),
                ]
            )
        ]

    @staticmethod
    def train(data_path, model_path, color=False, convnet=True, epochs=10):
        classifier = Image_Classifier()
        classifier.params["convnet"] = convnet

        logger.info(
            "image_classifier.train({}) -{}> {}".format(
                data_path,
                "convnet-" if classifier.params["convnet"] else "",
                model_path,
            )
        )

        success, train_images = file.load(f"{data_path}/train_images.pyndarray")
        if success:
            success, train_labels = file.load(f"{data_path}/train_labels.pyndarray")
        if success:
            success, test_images = file.load(f"{data_path}/test_images.pyndarray")
        if success:
            success, test_labels = file.load(f"{data_path}/test_labels.pyndarray")
        if success:
            success, classifier.class_names = file.load_json(
                f"{data_path}/class_names.json"
            )
        if not success:
            return False

        from tensorflow.keras.utils import to_categorical

        train_labels = to_categorical(train_labels)
        test_labels = to_categorical(test_labels)

        window_size = train_images.shape[1]
        input_shape = (
            (window_size, window_size, 3)
            if color
            else (window_size, window_size, 1)
            if convnet
            else (window_size, window_size)
        )
        logger.info(f"input:{string.pretty_shape(input_shape)}")

        if convnet and not color:
            train_images = np.expand_dims(train_images, axis=3)
            test_images = np.expand_dims(test_images, axis=3)

        for name, thing in zip(
            "train_images,train_labels,test_images,test_labels".split(","),
            [train_images, train_labels, test_images, test_labels],
        ):
            logger.info("{}: {}".format(name, string.pretty_shape_of_matrix(thing)))
        logger.info(
            f"{len(classifier.class_names)} class(es): {', '.join(classifier.class_names)}"
        )

        train_images = train_images / 255.0
        test_images = test_images / 255.0

        if convnet:
            # https://medium.com/swlh/convolutional-neural-networks-for-multiclass-image-classification-a-beginners-guide-to-6dbc09fabbd
            classifier.model = tf.keras.Sequential(
                [
                    tf.keras.layers.Conv2D(
                        filters=48,
                        kernel_size=3,
                        activation="relu",
                        input_shape=input_shape,
                    ),
                    tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
                    tf.keras.layers.Conv2D(
                        filters=48, kernel_size=3, activation="relu"
                    ),
                    tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
                    tf.keras.layers.Conv2D(
                        filters=32, kernel_size=3, activation="relu"
                    ),
                    tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
                    tf.keras.layers.Flatten(),
                    tf.keras.layers.Dense(128, activation="relu"),
                    tf.keras.layers.Dense(64, activation="relu"),
                    tf.keras.layers.Dense(len(classifier.class_names)),
                    tf.keras.layers.Activation("softmax"),
                ]
            )
        else:
            # https://github.com/gato/tensor-on-pi/blob/master/Convolutional%20Neural%20Network%20digit%20predictor.ipynb
            classifier.model = tf.keras.Sequential(
                [
                    tf.keras.layers.Flatten(input_shape=input_shape),
                    tf.keras.layers.Dense(128, activation="relu"),
                    tf.keras.layers.Dense(len(classifier.class_names)),
                    tf.keras.layers.Activation("softmax"),
                ]
            )

        classifier.model.summary()

        classifier.model.compile(
            optimizer="adam",
            loss=tf.keras.losses.categorical_crossentropy,
            metrics=["accuracy"],
        )

        classifier.model.fit(train_images, train_labels, epochs=epochs)

        test_accuracy = float(
            classifier.model.evaluate(test_images, test_labels, verbose=2)[1]
        )
        logger.info("test accuracy: {:.4f}".format(test_accuracy))

        if not file.save_json(
            f"{model_path}/eval.json",
            {"metrics": {"test_accuracy": test_accuracy}},
        ):
            return False

        if not classifier.save(model_path):
            return False

        return classifier.predict(
            test_images,
            np.argmax(test_labels, axis=1),
            model_path,
            page_count=10,
        )

    @property
    def input_shape(self):
        return self.model.layers[0].input_shape[1:] if self.model.layers else []