layoutlm-document

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7561
  • Answer: {'precision': 0.7122692725298588, 'recall': 0.802937576499388, 'f1': 0.7548906789413118, 'number': 817}
  • Header: {'precision': 0.42063492063492064, 'recall': 0.44537815126050423, 'f1': 0.4326530612244898, 'number': 119}
  • Question: {'precision': 0.7776769509981851, 'recall': 0.7957288765088208, 'f1': 0.7865993575034419, 'number': 1077}
  • Overall Precision: 0.7287
  • Overall Recall: 0.7779
  • Overall F1: 0.7525
  • Overall Accuracy: 0.7896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7564 1.0 10 1.4998 {'precision': 0.08313725490196078, 'recall': 0.12974296205630356, 'f1': 0.10133843212237093, 'number': 817} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1588785046728972, 'recall': 0.1894150417827298, 'f1': 0.17280813214739515, 'number': 1077} 0.1211 0.1540 0.1356 0.4467
1.3951 2.0 20 1.1811 {'precision': 0.25396825396825395, 'recall': 0.37209302325581395, 'f1': 0.3018867924528302, 'number': 817} {'precision': 0.15625, 'recall': 0.04201680672268908, 'f1': 0.06622516556291391, 'number': 119} {'precision': 0.35285815102328866, 'recall': 0.46425255338904364, 'f1': 0.400962309542903, 'number': 1077} 0.3057 0.4019 0.3473 0.5764
1.13 3.0 30 0.9739 {'precision': 0.3972746331236897, 'recall': 0.4638922888616891, 'f1': 0.4280067758328628, 'number': 817} {'precision': 0.15789473684210525, 'recall': 0.07563025210084033, 'f1': 0.10227272727272725, 'number': 119} {'precision': 0.42933333333333334, 'recall': 0.5979572887650882, 'f1': 0.4998059759410168, 'number': 1077} 0.4110 0.5127 0.4562 0.6753
0.9412 4.0 40 0.8708 {'precision': 0.4682203389830508, 'recall': 0.5410036719706243, 'f1': 0.5019875070982396, 'number': 817} {'precision': 0.21782178217821782, 'recall': 0.18487394957983194, 'f1': 0.2, 'number': 119} {'precision': 0.5829187396351575, 'recall': 0.6527390900649953, 'f1': 0.615856329391152, 'number': 1077} 0.5184 0.5797 0.5474 0.7122
0.7809 5.0 50 0.7932 {'precision': 0.6105990783410138, 'recall': 0.6487148102815178, 'f1': 0.629080118694362, 'number': 817} {'precision': 0.24347826086956523, 'recall': 0.23529411764705882, 'f1': 0.23931623931623933, 'number': 119} {'precision': 0.6091867469879518, 'recall': 0.7511606313834726, 'f1': 0.6727650727650728, 'number': 1077} 0.5915 0.6791 0.6323 0.7425
0.6602 6.0 60 0.7728 {'precision': 0.5849639546858908, 'recall': 0.6952264381884945, 'f1': 0.6353467561521253, 'number': 817} {'precision': 0.23595505617977527, 'recall': 0.17647058823529413, 'f1': 0.20192307692307693, 'number': 119} {'precision': 0.6678352322524101, 'recall': 0.7075208913649025, 'f1': 0.6871055004508566, 'number': 1077} 0.6138 0.6711 0.6412 0.7490
0.564 7.0 70 0.7390 {'precision': 0.6692563817980022, 'recall': 0.7380660954712362, 'f1': 0.7019790454016297, 'number': 817} {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} {'precision': 0.6548808608762491, 'recall': 0.7910863509749304, 'f1': 0.7165685449957948, 'number': 1077} 0.6399 0.7397 0.6862 0.7689
0.494 8.0 80 0.7376 {'precision': 0.7046750285062714, 'recall': 0.7564259485924113, 'f1': 0.7296340023612751, 'number': 817} {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} {'precision': 0.6681957186544343, 'recall': 0.8115134633240483, 'f1': 0.7329140461215932, 'number': 1077} 0.6602 0.7596 0.7064 0.7714
0.451 9.0 90 0.7304 {'precision': 0.7074756229685807, 'recall': 0.799265605875153, 'f1': 0.7505747126436781, 'number': 817} {'precision': 0.3333333333333333, 'recall': 0.46218487394957986, 'f1': 0.3873239436619718, 'number': 119} {'precision': 0.7134404057480981, 'recall': 0.7836583101207056, 'f1': 0.7469026548672568, 'number': 1077} 0.6834 0.7710 0.7246 0.7738
0.4322 10.0 100 0.7547 {'precision': 0.7004310344827587, 'recall': 0.795593635250918, 'f1': 0.7449856733524355, 'number': 817} {'precision': 0.2887323943661972, 'recall': 0.3445378151260504, 'f1': 0.31417624521072796, 'number': 119} {'precision': 0.7091503267973857, 'recall': 0.8059424326833797, 'f1': 0.7544545849630595, 'number': 1077} 0.6796 0.7745 0.7239 0.7750
0.3682 11.0 110 0.7389 {'precision': 0.7153518123667377, 'recall': 0.8212974296205631, 'f1': 0.7646723646723647, 'number': 817} {'precision': 0.3219178082191781, 'recall': 0.3949579831932773, 'f1': 0.3547169811320755, 'number': 119} {'precision': 0.7476635514018691, 'recall': 0.8170844939647168, 'f1': 0.7808340727595386, 'number': 1077} 0.7068 0.7938 0.7478 0.7860
0.3623 12.0 120 0.7472 {'precision': 0.6998916576381365, 'recall': 0.7906976744186046, 'f1': 0.7425287356321839, 'number': 817} {'precision': 0.373015873015873, 'recall': 0.3949579831932773, 'f1': 0.38367346938775515, 'number': 119} {'precision': 0.7753818508535489, 'recall': 0.8012999071494893, 'f1': 0.7881278538812785, 'number': 1077} 0.7197 0.7730 0.7454 0.7813
0.3235 13.0 130 0.7432 {'precision': 0.7095032397408207, 'recall': 0.8041615667074663, 'f1': 0.7538726333907055, 'number': 817} {'precision': 0.38620689655172413, 'recall': 0.47058823529411764, 'f1': 0.42424242424242425, 'number': 119} {'precision': 0.7731864095500459, 'recall': 0.7818012999071495, 'f1': 0.7774699907663898, 'number': 1077} 0.7199 0.7725 0.7453 0.7850
0.3052 14.0 140 0.7459 {'precision': 0.7206040992448759, 'recall': 0.817625458996328, 'f1': 0.7660550458715596, 'number': 817} {'precision': 0.4065040650406504, 'recall': 0.42016806722689076, 'f1': 0.4132231404958677, 'number': 119} {'precision': 0.7706502636203867, 'recall': 0.8142989786443825, 'f1': 0.7918735891647856, 'number': 1077} 0.7290 0.7923 0.7593 0.7897
0.3046 15.0 150 0.7561 {'precision': 0.7122692725298588, 'recall': 0.802937576499388, 'f1': 0.7548906789413118, 'number': 817} {'precision': 0.42063492063492064, 'recall': 0.44537815126050423, 'f1': 0.4326530612244898, 'number': 119} {'precision': 0.7776769509981851, 'recall': 0.7957288765088208, 'f1': 0.7865993575034419, 'number': 1077} 0.7287 0.7779 0.7525 0.7896

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kamleshsolanki/layoutlm-document

Finetuned
(224)
this model