File size: 14,752 Bytes
e8a3ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
model-index:
- name: layoutlm-document-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-document-v2

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0036
- Ate de la facture: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Iret du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}
- Om du fournisseur: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Ontant tva: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
- Ontant total ht: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
- Ontant total ttc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}
- Umero de bc: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Ate de la facture                                                                                       | Iret du fournisseur                                                                      | Om du fournisseur                                          | Ontant tva                                                                               | Ontant total ht                                                                                         | Ontant total ttc                                                                                         | Umero de bc                                                               | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.6209        | 1.0   | 6    | 1.0535          | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.625, 'recall': 1.0, 'f1': 0.7692307692307693, 'number': 20}              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.7619047619047619, 'recall': 0.8421052631578947, 'f1': 0.8, 'number': 19} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19}                | {'precision': 0.4117647058823529, 'recall': 0.3333333333333333, 'f1': 0.36842105263157887, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10}                | 0.7607            | 0.6794         | 0.7177     | 0.7863           |
| 0.8518        | 2.0   | 12   | 0.4979          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 0.7692307692307693, 'recall': 1.0, 'f1': 0.8695652173913044, 'number': 20} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19}               | {'precision': 0.8823529411764706, 'recall': 0.7894736842105263, 'f1': 0.8333333333333333, 'number': 19} | {'precision': 0.8333333333333334, 'recall': 0.7142857142857143, 'f1': 0.7692307692307692, 'number': 21}  | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 10} | 0.9055            | 0.8779         | 0.8915     | 0.9084           |
| 0.4183        | 3.0   | 18   | 0.2090          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20}  | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21}                 | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771            | 0.9771         | 0.9771     | 0.9771           |
| 0.2071        | 4.0   | 24   | 0.1112          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20}  | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9047619047619048, 'recall': 1.0, 'f1': 0.9500000000000001, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21}                 | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | 0.9771            | 0.9771         | 0.9771     | 0.9771           |
| 0.084         | 5.0   | 30   | 0.0304          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0429        | 6.0   | 36   | 0.0146          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0183        | 7.0   | 42   | 0.0090          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.011         | 8.0   | 48   | 0.0045          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0081        | 9.0   | 54   | 0.0041          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0062        | 10.0  | 60   | 0.0124          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19}                              | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21}                  | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 0.9924            | 0.9924         | 0.9924     | 0.9924           |
| 0.005         | 11.0  | 66   | 0.0250          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19}                              | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21}                  | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 0.9924            | 0.9924         | 0.9924     | 0.9924           |
| 0.0047        | 12.0  | 72   | 0.0193          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19}                              | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21}                  | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 0.9924            | 0.9924         | 0.9924     | 0.9924           |
| 0.0073        | 13.0  | 78   | 0.0023          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0041        | 14.0  | 84   | 0.0034          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |
| 0.0044        | 15.0  | 90   | 0.0036          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21}                                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}                | 1.0               | 1.0            | 1.0        | 1.0              |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1