File size: 15,754 Bytes
8657131 14777ce 5a8474c 14777ce dc908b3 14777ce dc908b3 14777ce dc908b3 14777ce dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 79ed50a dc908b3 14777ce dc908b3 14777ce dc908b3 14777ce dc908b3 b47e6c1 dc908b3 14777ce dc908b3 14777ce dc908b3 14777ce dc908b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
---
license: mit
pipeline_tag: text-to-video
library_name: diffusers
---
<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/KANDINSKY_LOGO_1_WHITE.png">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/KANDINSKY_LOGO_1_BLACK.png">
<img alt="Kandinsky Logo" src="https://user-images.githubusercontent.com/25423296/163456779-a8556205-d0a5-45e2-ac17-42d089e3c3f8.png">
</picture>
</div>
<div align="center">
<a href="https://habr.com/ru/companies/sberbank/articles/951800/">Habr</a> | <a href="https://kandinskylab.ai/">Project Page</a> | <a href="https://arxiv.org/abs/2511.14993">Technical Report</a> | π€ <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-lite> Video Lite </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-video-pro> Video Pro </a> / <a href=https://huggingface.co/collections/kandinskylab/kandinsky-50-image-lite> Image Lite </a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/kandinsky5"> π€ Diffusers </a> | <a href="https://github.com/kandinskylab/kandinsky-5/blob/main/comfyui/README.md">ComfyUI</a>
</div>
<h1>Kandinsky 5.0: A family of diffusion models for Video & Image generation</h1>
In this repository, we provide a family of diffusion models to generate a video or an image given a textual prompt and/or image.
https://github.com/user-attachments/assets/b06f56de-1b05-4def-a611-1a3159ed71b0
## Kandinsky 5.0 Video Pro
Kandinsky 5.0 Video Pro is a line-up of 19B models that generates high-quality HD videos from English and Russian prompts with controllable camera motion.
We provide several Text-to-Video model variants, each optimized for different use cases:
* SFT model β delivers the highest generation quality;
* Pretrain model β designed for fine-tuning by researchers and enthusiasts.
All models are available in two versions: for generating 5-second and 10-second videos.
Additionally, we provide Image-to-Video model capable to generate video given input image and text prompt.
### Model Zoo
| Model | config | video duration | NFE | Checkpoint | Latency* |
|-------------------------------------|--------|----------------|-----|------------|----------------|
| Kandinsky 5.0 T2V Pro SFT 5s HD | configs/k5_pro_t2v_5s_sft_hd.yaml | 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s) | 1241 |
| Kandinsky 5.0 T2V Pro SFT 10s HD |configs/k5_pro_t2v_10s_sft_hd.yaml| 10s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-10s) | - |
| Kandinsky 5.0 T2V Pro SFT 5s SD | configs/k5_pro_t2v_5s_sft_sd.yaml | 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s) | 560 |
| Kandinsky 5.0 T2V Pro SFT 10s SD |configs/k5_pro_t2v_10s_sft_sd.yaml| 10s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-sft-10s) | 1158 |
| Kandinsky 5.0 T2V Pro pretrain 5s HD |-| 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-5s) | 1241 |
| Kandinsky 5.0 T2V Pro pretrain 10s HD |-| 10s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-10s) | - |
| Kandinsky 5.0 T2V Pro pretrain 5s SD |-| 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-5s) | 560 |
| Kandinsky 5.0 T2V Pro pretrain 10s SD |-| 10s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2V-Pro-pretrain-10s) | 1158 |
| Kandinsky 5.0 I2V Pro HD 5s | configs/k5_pro_i2v_5s_sft_hd.yaml | 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s) | - |
| Kandinsky 5.0 I2V Pro SD 5s | configs/k5_pro_i2v_5s_sft_sd.yaml | 5s | 100 |π€ [HF](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s) | - |
*Latency was measured after the second inference run. The first run of the model can be slower due to the compilation process. Inference was measured on an NVIDIA H100 GPU with 80 GB of memory, using CUDA 12.8.1 and PyTorch 2.8. For 5-second models Flash Attention 3 was used.
### Examples:
<table border="0" style="width: 100; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/9sB-kQpsICq-dcVIajiyI.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/GpRobj3LvOHtbtqLNz9mC.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/tXdz7zzTD0jnZRoNnwy53.mp4" width=100 controls autoplay loop></video>
</td>
</tr>
<tr>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/7M4h8Q8r4aBQIB9I_Nm0B.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/cCiLiFxBdFLekFro6qokX.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/wBvOFtckxOiY0-NkT7MHK.mp4" width=100 controls autoplay loop></video>
</td>
</tr>
<tr>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/b0VOCqS6elgqh59mkw2XA.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/NXiimel04zauXjcE1vf90.mp4" width=100 controls autoplay loop></video>
</td>
<td>
<video src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/T6bRN55KURwF25zO7TgkY.mp4" width=100 controls autoplay loop></video>
</td>
</tr>
</table>
### Results:
#### Side-by-Side evaluation
<table border="0" style="width: 200; text-align: left; margin-top: 20px;">
<tr>
<td>
<img width="200" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/5IMS5n1daytAJjmIiETjW.png" /></img>
</td>
<td>
<img width="200" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/sy-SGNlgg91HqFM4ASYXp.png" /></img>
</td>
<tr>
<td>
Comparison with Veo 3
</td>
<td>
Comparison with Veo 3 fast
</td>
<tr>
<td>
<img width="200" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/l1u3fHIcCDhYC8j-AuqqK.png" /></img>
</td>
<td>
<img width="200" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/678781c9e3c3c0163db4f99c/dUqLsyT5ADHRNqWsYpVPf.png" /></img>
</td>
<tr>
<td>
Comparison with Wan 2.2 A14B Text-to-Video mode
</td>
<td>
Comparison with Wan 2.2 A14B Image-to-Video mode
</td>
</table>
## Quickstart
#### Installation
Clone the repo:
```sh
git clone https://github.com/kandinskylab/kandinsky-5.git
cd kandinsky-5
```
Install dependencies:
```sh
pip install -r requirements.txt
```
To improve inference performance on NVidia Hopper GPUs, we recommend installing [Flash Attention 3](https://github.com/Dao-AILab/flash-attention/?tab=readme-ov-file#flashattention-3-beta-release).
#### Model Download
```sh
python download_models.py
```
use `models` argument to download some specific models, otherwise all models will be downloaded
example to download only `kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s` and `kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s`:
```sh
python download_models.py --models kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s,kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s
```
#### Run Kandinsky 5.0 T2V Lite SFT 5s
```sh
python test.py --prompt "A dog in red hat"
```
#### Run Kandinsky 5.0 T2V Lite SFT 10s
```sh
python test.py --config ./configs/k5_lite_t2v_10s_sft_sd.yaml --prompt "A dog in red hat" --video_duration 10
```
#### Run Kandinsky 5.0 I2V Lite 5s
```sh
python test.py --config ./configs/k5_lite_i2v_5s_sft_sd.yaml --prompt "The bear plays balalaika." --image "./assets/test_image.jpg" --video_duration 5
```
### T2V Inference
```python
import torch
from kandinsky import get_T2V_pipeline
device_map = {
"dit": torch.device('cuda:0'),
"vae": torch.device('cuda:0'),
"text_embedder": torch.device('cuda:0')
}
pipe = get_T2V_pipeline(device_map, conf_path="configs/k5_lite_t2v_5s_sft_sd.yaml")
images = pipe(
seed=42,
time_length=5,
width=768,
height=512,
save_path="./test.mp4",
text="A cat in a red hat",
)
```
### I2V Inference
```python
import torch
from kandinsky import get_I2V_pipeline
device_map = {
"dit": torch.device('cuda:0'),
"vae": torch.device('cuda:0'),
"text_embedder": torch.device('cuda:0')
}
pipe = get_I2V_pipeline(device_map, conf_path="configs/k5_lite_i2v_5s_sft_sd.yaml")
images = pipe(
seed=42,
time_length=5,
save_path='./test.mp4',
text="The bear plays balalaika.",
image = "assets/test_image.jpg",
)
```
Please, refer to examples folder in github for more examples in various notebooks.
### Distributed Inference
For a faster inference, we also provide the capability to perform inference in a distributed way:
```
NUMBER_OF_NODES=1
NUMBER_OF_DEVICES_PER_NODE=1 / 2 / 4
python -m torch.distributed.launch --nnodes $NUMBER_OF_NODES --nproc-per-node $NUMBER_OF_DEVICES_PER_NODE test.py
```
### Optimized Inference
#### Offloading
For less memory consumption you can use **offloading** of the models.
```sh
python test.py --prompt "A dog in red hat" --offload
```
#### Magcache
Also we provide [Magcache](https://github.com/Zehong-Ma/MagCache) inference for faster generations (now available for sft 5s and sft 10s checkpoints).
```sh
python test.py --prompt "A dog in red hat" --magcache
```
#### Qwen encoder quantization
To reduce GPU memory needed for Qwen encoder we provide option to use NF4-quantized version from [bitsandbytes](https://github.com/bitsandbytes-foundation/bitsandbytes).
```sh
python test.py --prompt "A dog in red hat" --qwen_quantization
```
#### Attention engine selection
Depending on your hardware you can use the follwing full attention algorithm implementation:
* PyTorch [SDPA](https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
* [Flash Attention 2](https://github.com/Dao-AILab/flash-attention)
* [Flash Attention 3](https://github.com/Dao-AILab/flash-attention/tree/main/hopper)
* [Sage Attention](https://github.com/thu-ml/SageAttention)
The attention algorithm can be selected using an option "--attention_engine" of test.py script for 5 second (and less) video generation. For 10-second generation we use sparse attention algorithm [NABLA](https://arxiv.org/abs/2507.13546).
Note that currently (19 Oct. 2025) version build from source contains a bug and produces noisy output. A temporary workaround to fix it is decribed [here](https://github.com/thu-ml/SageAttention/issues/277).
```sh
python test.py --prompt "A dog in red hat" --attention_engine=flash_attention_3
```
```sh
python test.py --prompt "A dog in red hat" --attention_engine=flash_attention_2
```
```sh
python test.py --prompt "A dog in red hat" --attention_engine=sdpa
```
```sh
python test.py --prompt "A dog in red hat" --attention_engine=sage
```
By default we use option --attention_engine=auto which enables automatic selection of the most optimal algorithm installed in your system.
### CacheDiT
cache-dit offers Fully Cache Acceleration support for Kandinsky-5 with DBCache, TaylorSeer and Cache CFG. Visit their [example](https://github.com/vipshop/cache-dit/blob/main/examples/pipeline/run_kandinsky5_t2v.py) for more details.
### Beta testing
You can apply to participate in the beta testing of the Kandinsky Video Lite via the [telegram bot](https://t.me/kandinsky_access_bot).
# Authors
<B>Core Contributors</B>:
- <B>Video</B>: Alexey Letunovskiy, Maria Kovaleva, Lev Novitskiy, Denis Koposov, Dmitrii
Mikhailov, Anastasiia Kargapoltseva, Anna Dmitrienko, Anastasia Maltseva
- <B>Image & Editing</B>: Nikolai Vaulin, Nikita Kiselev, Alexander Varlamov
- <B>Pre-training Data</B>: Ivan Kirillov, Andrey Shutkin, Nikolai Vaulin, Ilya Vasiliev
- <B>Post-training Data</B>: Julia Agafonova, Anna Averchenkova, Olga Kim
- <B>Research Consolidation & Paper</B>: Viacheslav Vasilev, Vladimir Polovnikov
<B>Contributors</B>: Yury Kolabushin, Kirill Chernyshev, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Kormilitsyn Semen, Tatiana Nikulina, Olga Vdovchenko, Polina Mikhailova, Polina
Gavrilova, Nikita Osterov, Bulat Akhmatov
<B>Track Leaders</B>: Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis
Parkhomenko
<B>Project Supervisor</B>: Denis Dimitrov
# Citation
```
@misc{arkhipkin2025kandinsky50familyfoundation,
title={Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation},
author={Vladimir Arkhipkin and Vladimir Korviakov and Nikolai Gerasimenko and Denis Parkhomenko and Viacheslav Vasilev and Alexey Letunovskiy and Nikolai Vaulin and Maria Kovaleva and Ivan Kirillov and Lev Novitskiy and Denis Koposov and Nikita Kiselev and Alexander Varlamov and Dmitrii Mikhailov and Vladimir Polovnikov and Andrey Shutkin and Julia Agafonova and Ilya Vasiliev and Anastasiia Kargapoltseva and Anna Dmitrienko and Anastasia Maltseva and Anna Averchenkova and Olga Kim and Tatiana Nikulina and Denis Dimitrov},
year={2025},
eprint={2511.14993},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2511.14993},
}
@misc{mikhailov2025nablanablaneighborhoodadaptiveblocklevel,
title={$\nabla$NABLA: Neighborhood Adaptive Block-Level Attention},
author={Dmitrii Mikhailov and Aleksey Letunovskiy and Maria Kovaleva and Vladimir Arkhipkin
and Vladimir Korviakov and Vladimir Polovnikov and Viacheslav Vasilev
and Evelina Sidorova and Denis Dimitrov},
year={2025},
eprint={2507.13546},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.13546},
}
```
# Acknowledgements
We gratefully acknowledge the open-source projects and research that made Kandinsky 5.0 possible:
- [PyTorch](https://pytorch.org/) β for model training and inference.
- [FlashAttention 3](https://github.com/Dao-AILab/flash-attention) β for efficient attention and faster inference.
- [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL) β for providing high-quality text embeddings.
- [CLIP](https://github.com/openai/CLIP) β for robust textβimage alignment.
- [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) β for video latent encoding and decoding.
- [MagCache](https://github.com/Zehong-Ma/MagCache) β for accelerated inference.
- [ComfyUI](https://github.com/comfyanonymous/ComfyUI) β for integration into node-based workflows.
We deeply appreciate the contributions of these communities and researchers to the open-source ecosystem.
|