Edit model card

opt-babylm2-subset-default-20-epochs-1e-3

This model was trained from scratch on the kanishka/babylm2-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4350
  • Accuracy: 0.5324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5365 1.0 14169 2.7500 0.4857
2.3708 2.0 28338 2.5870 0.5032
2.2572 3.0 42507 2.4839 0.5150
2.1958 4.0 56676 2.4295 0.5220
2.1251 5.0 70845 2.4013 0.5259
2.0769 6.0 85014 2.3830 0.5281
2.043 7.0 99183 2.3736 0.5304
2.007 8.0 113352 2.3671 0.5313
1.9813 9.0 127521 2.3661 0.5322
1.9593 10.0 141690 2.3705 0.5325
1.933 11.0 155859 2.3677 0.5331
1.9106 12.0 170028 2.3727 0.5333
1.8847 13.0 184197 2.3779 0.5335
1.8636 14.0 198366 2.3834 0.5335
1.8391 15.0 212535 2.3955 0.5334
1.8179 16.0 226704 2.4015 0.5332
1.7918 17.0 240873 2.4100 0.5331
1.7674 18.0 255042 2.4159 0.5330
1.751 19.0 269211 2.4263 0.5327
1.7338 20.0 283380 2.4350 0.5324

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/opt-babylm2-subset-default-20-epochs-1e-3

Evaluation results